

HIGHEST GOLD GRADES DRILLED TO DATE AT TESORITO

Highlights

- Tesorito drill hole results from TS-DH-07 include:
 - 64m @ 1.67g/t Au from 144m, within
 - 253.1m @ 1.01 g/t Au from 2.9m
- The latest drill hole results point to Tesorito being a significant near surface porphyry gold target just 800m from the gold Resources and Reserves defined at Metminco's Miraflores deposit (refer Table 2 below). A second mineralised porphyry target is located just 2km south of Tesorito at Chuscal. Metminco is currently advancing negotiations with AngloGold Ashanti on this target. These new targets could significantly impact on the positive Feasibility Study announced on Miraflores, given that all three lie within a 1.3km radius.
- Drill hole TS-DH-07 was drilled perpendicular to and beneath TS-DH-02 which, as previously reported, gave 384m @ 1.01g/t from 16m. TS-DH-07 demonstrates the highest grades seen to date at Tesorito with significant width and downhole continuity to the higher grade mineralisation (over 1.5 g/t Au).
- Mapping and geochemistry suggest potential repetition of the higher grade zone to the north with the higher grade mineralisation in TS-DH-07 associated with a dilational zone within a north-northeast (NNE) orientated 600m X 350m coincident gold and copper soil anomaly (refer Figure 2 below).

Executive Chairman Mr. Kevin Wilson commented:

"The confirmation of a mineralised porphyry with higher grade gold mineralisation at Tesorito is a material step forward for the Company.

We are very excited by the results of this drilling. It demonstrates that there is potential for the Company's 880koz Resource at Miraflores to be complemented by this near surface mineralised target at the Tesorito porphyry, only 800m to the southeast. Importantly, any near surface, higher grade gold mineralisation delineated at Tesorito has the potential to materially improve the economics of the Miraflores feasibility study though an integrated development plan, sharing mine and process infrastructure. In addition, we have additional targets at Chuscal and Dosquebrados requiring follow-up, all within a potential radius of operation for a centralised plant."

All references to mineralisation that pertain to the Tesorito Target are limited in meaning to the geological processes that result in the introduction of minerals of economic interest. For the avoidance of doubt, there is no guarantee that the mineralisation at Tesorito will be of sufficient concentration and extent as well as having favourable geotechnical and metallurgical characteristics that make it profitable to extract using modern mining and beneficiation processes.

Summary

Metminco Limited (ASX & AIM: MNC) ("**Metminco**" or the "**Company**") is pleased to announce the results of the assays (Table 1) received for the final two diamond drill holes (plus partial results received for the TS-DH-05) from its Tesorito gold prospect in the Quinchia district, Colombia. The Quinchia district occurs in the mid Cauca Belt, host to large gold deposits such as Buritica (10Mozs), Marmato (8.1Mozs), La Colosa (28Mozs) and Nuevo Chaquiro (5.7Mozs Au & 3.6Mt Cu) (Figure 1).

Figure 1. The Cauca Belt of Colombia, with the location of Metminco's Miraflores Project at Quinchia, which is adjacent to the Tesorito prospect.

The Tesorito prospect occurs 800m southeast of the Company's Miraflores deposit (0.88Moz gold Resource, see Table 2 below) and approximately 3km southeast of the Company's Dosquebradas deposit (0.92Moz gold Resource estimated under NI 43-101 – as disclosed in the Company's announcement dated 7 March 2016). It is also located approximately 2km north of the undrilled Chuscal porphyry target (currently under negotiation).

The Company's 1,500m diamond drilling program, was designed to confirm and expand along strike the gold mineralisation intersected in drilling by a previous operator. Particularly, hole TS-DH-02 which reported **384m @ 1.01g/t Au** from surface to end-of-hole (see Table 1 below and refer to the Company's announcement of 7 March 2016). The program also tested a previously undrilled geophysical anomaly located approximately 300m to the northwest of TS-DH-02 (refer Figure 2).

Figure 2. Plan of Tesorito drilling, showing location of drill traces and IP anomaly. Section B-B' is presented as Figure 4 (below), the other section (A-A') is appended.

www.metminco.com.au

Next Steps at Tesorito

- Consolidate the new drill information with historical data including recently sourced geophysical studies.
- Design a program of drilling to both scope the known high grade mineralisation at surface; and investigate potential repetitions of the high grade zone within the broader intrusive porphyry complex.
- Investigate the depth potential of mineralised porphyry by considering a deep drill hole to test the depth extension of the high grade gold zone into what is thought to be higher grade base metals at depth.

Results

The program comprised four diamond drill holes (holes TS-DH-04, 05, 06 and 07; see Figures 2, 3, and 4). Results of the entire program are summarised (along with three previously drilled holes) in Table 1 below.

Drill Hole	Assays ⁽¹⁾
TS-DH-01 Previously drilled and reported	266.5m @ 0.46 g/t Au, 0.58 g/t Ag & 0.03% Cu from 83.5m
TS-DH-02 Previously drilled and reported	384.0m @ 1.01 g/t Au, 0.86 g/t Ag & 0.08% Cu from 16.0m including:
	32.5m @ 1.34 g/t Au, 0.8 g/t Ag & 0.09% Cu from 48.8m; and 156.6m @ 1.28 g/t Au, 0.9 g/t Ag & 0.09% Cu from 88.3m.
TS-DH-03 Previously drilled and reported	254.9m @ 0.51 g/t Au, 0.7 g/t Ag & 0.05% Cu from 9.3m
TS-DH-04 Recently drilled and reported (refer ASX release of 31 July 2018)	179.8m @ 0.7 g/t Au, 0.9 g/t Ag & 0.06% Cu from 3m including:
	21.8m @ 1.03 g/t Au, 0.9 g/t Ag & 0.08% Cu from 3m; and 88.0m @ 0.84 g/t Au, 1.0 g/t Ag & 0.08% Cu from 26.8m.
TS-DH-05 Recently drilled and partly reported (refer to the Company's announcement of	140.3m @ 0.44 g/t Au, 0.6 g/t Ag & 0.05% Cu from 1.7m including:
31 July 2018)	16.9m @ 1.01 g/t Au, 0.34 g/t Ag & 0.07% Cu from 1.7m; and 10.9m @ 0.56 g/t Au, 1.1 g/t Ag & 0.08% Cu from 26.8m; and 15.5m @ 0.61 g/t Au, 0.83 g/t Ag & 0.06% Cu from 112.6m.
	38.7m @ 0.40 g/t Au, 1.25 g/t Ag & 0.05% Cu from 179.0m including:
	10.3m @ 0.50 g/t Au, 0.8 g/t Ag & 0.05% Cu from 179m.
	75.8m @ 0.60 g/t Au, 0.71 g/t Ag & 0.04% Cu from 259.9m including:
	21.0m @ 0.76 g/t Au, 0.8 g/t Ag & 0.05% Cu from 278.8m; and 12.9m @ 1.07 g/t Au, 0.5 g/t Ag & 0.04% Cu from 308.2m.
TS-DH-06 Recently drilled	130.0m @ 0.31 g/t Au, 0.48 g/t Ag & 0.03% Cu from 2.0m
Matmines Limited APN 42 110 750 240	Suite 2 Lovel 2, 470 Collins Street, Molhourne, Vietoria, 2000

Metminco Limited ABN 43 119 759 349 ASX Code: MNC.AX; AIM Code: MNC.L Suite 3, Level 3, 470 Collins Street, Melbourne, Victoria, 3000 Tel: +61 (0) 3 9867-7199; Fax: +61 (0) 3 9867-8587

www.metminco.com.au

	including: 18.0m @ 0.77 g/t Au, 1.0 g/t Ag & 0.07% Cu from 78.0m.
TS-DH-07 Recently drilled	253.1m @ 1.01 g/t Au, 0.87 g/t Ag & 0.07% Cu from 2.9m including: 18.0m @ 1.23 g/t Au, 1.0 g/t Ag & 0.07% Cu from 54.0m; and 10.0m @ 0.89 g/t Au, 1.1 g/t Ag & 0.07% Cu from 94.0m; and 10.0m @ 1.18 g/t Au, 0.57 g/t Ag & 0.06% Cu from 126m; and 64.0m @ 1.67 g/t Au, 0.91 g/t Ag & 0.11% Cu from 144.0m; and 10.0m @ 1.10 g/t Au, 1.2 g/t Ag & 0.06% Cu from 240.0m.

Table 1. Summary assay results from all drill holes to date at Tesorito.

⁽¹⁾ Refer to JORC Table 1 Section 2 – Data aggregation methods (appended) for details on compositing.

From the results of the Tesorito drilling:

- all seven holes drilled into Tesorito have returned gold mineralisation from a multi-phase andesitic porphyritic intrusive complex;
- higher gold grades (TS-DH-02 and TS-DH-07) are continuous and occur within a much broader mineralisation envelope of approximately +0.5 g/t Au envelope;
- the localised controls on higher order gold mineralisation traversed by TS-DH-02, TS-DH-04 and TS-DH-07 are thought to be NW orientated early phase hydrothermal pulses injected within a NNW ellipsoid dilatational zone. At Tesorito, similarly shaped geochemical anomalies have been interpreted from the soil geochemistry to the north of the mineralisation identified in this drilling (refer Figure 2) potentially representing additional repetitions of similar early phase structurally controlled pulses;
- to date, porphyry mineralisation has been intersected down to 380m below surface (TS-DH-02). Copper and molybdenum grades are seen to broadly increase with depth in the deeper hole (TS-DH-02);
- intense phyllic alteration is mapped by the significant induced polarisation (IP) geophysical anomaly on the western edge of the Tesorito porphyry complex and is seen in the surface mapping, soil geochemical sampling and in the drill core (TS-DH-05 and TS-DH-06). This suggests a major hydrothermal system exists approximately 200-300m to the northwest of the locus of the Tesorito prospect.

Details of the Program

TS-DH-04 was collared from the same platform that was used to drill TS-DH-02 and was drilled at a steeper angle (70 degrees) to test the well-mineralised stockwork veining developed in porphyritic sub-volcanic (shallow depth) dacitic and andesitic intrusives.

TS-DH-05 was drilled to test for lateral and upward extensions of the well-mineralised stockwork veining traversed by drill hole TS-DH-02. In addition, TS-DH-05 was designed to test the nature and extent of the mineralisation beneath the >100 ppb gold in soil geochemical anomaly and the high grade (up to 2m at 6.6 g/t Au - refer to the Company's announcement of 27 March 2018, Appendix D) gold assays returned from sampling in trenches.

TS-DH-06 was drilled principally to test the nature and extent of what has caused the strong IP geophysical response over a north-northeast trending 1,000m long x 300m wide zone developed to Metminco Limited ABN 43 119 759 349 Suite 3, Level 3, 470 Collins Street, Melbourne, Victoria, 3000

ASX Code: MNC.AX; AIM Code: MNC.L

the northwest of the gold in soil geochemical anomaly. It was designed to traverse the zone which was modelled to have the strongest coincident chargeability and conductivity readings.

TS-DH-07 was designed to test the three-dimensional geometry of the higher-grade mineralisation returned from TS-DH-02 and any mappable controls which could assist in determining the extent and frequency of the higher-grade zones within the porphyry complex.

Figure 3. Core from TS-DH-07 showing veinlet styles.

Details of the drill results

TS-DH-05 confirmed the presence of stockwork veining developed in porphyritic sub volcanic dacitic and andesitic intrusives from 0 to 293m depth down hole, after which it passed into a less veined but increasingly sericite-altered porphyry for the remainder of the hole, which was terminated at 390.5 m. TS-DH-05 returned intercepts of 140.3m @ 0.44 g/t Au, 0.58 g/t Ag and 0.05% Cu from 1.7m; 38.7m @ 0.40 g/t Au, 1.25 g/t Ag and 0.05% Cu from 179m and 75.8m @ 0.60 g/t Au, 0.71 g/t Ag and 0.04% Cu from 259.9m.The extent and tenor of the mineralisation, resembles the results obtained from TS-DH-01 located approximately 100m towards the northeast.

METMINCO

Figure 4. Cross section B-B' from Figure 2 showing TS-DH-04; TS-DH-05; TS-DH-07 and the IP chargeability anomaly.

TS-DH-06 returned core exhibiting similar lithologies to those encountered in the lower hundred metres of TS-DH-05, comprising increasingly sericite-altered porphyritic dacitic and andesitic intrusive rocks. The intense sericite alteration, commonly referred to as phyllic alteration, is an important component of porphyry-style precious and base metal systems and is considered the likely cause of the strong IP geophysical response. The fact that this significantly intense anomaly extends for nearly 1km along the western limits of the porphyritic intrusive complex is indicative of a large zone of intensive phyllic alteration likely to be associated with a porphyry-style hydrothermal system of significant scale and intensity. TS-DH-06 returned intercepts of 130m @ 0.31 g/t Au, 0.48 g/t Ag and 0.03% Cu from 2m including 18.0m @ 0.77 g/t Au, 0.96 g/t Ag and 0.07% Cu from 78m.

TS-DH-07 drilled through significant intervals of well-veined porphyry similar to that encountered in TS-DH-02 and the upper parts of TS-DH-04 (Figures 2, 3 & 4) and returned an intercept of 253.1m @ 1.01 g/t Au, 0.87 g/t Ag and 0.07% Cu from 2.9m. This includes five intervals of at least 10 meters returning over 0.9 g/t Au, with the most significant being 64.0m @ 1.67 g/t Au, 0.91 g/t Ag and 0.11% Cu from 144m.

For further enquiries contact:

Kevin Wilson

Executive Chairman Metminco Limited;

kwilson@metminco.com.au +61 409 942 355

The Glossary of Terms is included as Appendix D in the Attachment Table 1

Table 2 Miraflores Resources and Reserves Statement

Miraflores Project Resources and Reserves

The Miraflores Project Mineral Resource estimate has been estimated by Metal Mining Consultants in accordance with the JORC Code (2012 Edition) and first publicly reported on 14 March 2017. The Miraflores Project Ore Reserve estimate has been estimated by Ausenco in accordance with the JORC Code (2012 Edition) and first publicly reported on 27 October 2017. No material changes have occurred after the reporting of these resource estimates since their first reporting.

Miraflores Mineral Resource Estimate, as at 14 March 2017

Resource Classification	Tonnes ('000)	Au (g/t)	0.0 /		Contained Metal (Koz Ag)
Measured	2,958	2.98	2.49	283	237
Indicated	6,311	2.74	2.90	557	588
Measured & Indicated	9,269	2.82	2.77	840	826
Inferred	487	2.36	3.64	37	57

Note:

- *i)* Reported at a 1.2g/t gold % Cu cut-off.
- ii) Mineral Resource estimated by Metal Mining Consultants Inc.
- iii) First publicly released on 14 March 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Mineral Resource estimation.
- iv) These Mineral Resources are inclusive of the Mineral Reserves listed below.
- v) Rounding may result in minor discrepancies.

Miraflores Mineral Reserve Estimate, as at 27 November 2017 (100% basis)

Reserve Classification	Tonnes (Mt)	Au (g/t)			Contained Metal (Koz Ag)
Proved	1.70	2.75	2.20	150	120
Probable	2.62	3.64	3.13	307	264
Total	4.32	3.29	2.77	457	385

Note:

- vi) Rounding of numbers may result in minor computational errors, which are not deemed to be significant.
- vii) These Ore Reserves are included in the Mineral Resources listed in the Table above.
- viii) First publicly released on 27 November 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Ore Reserve estimation.
- ix) Source: Ausenco, 2017.

For further information, please contact:	
METMINCO LIMITED	
Kevin Wilson	+61 409 942 355
NOMINATED ADVISOR AND JOINT BROKER	
RFC Ambrian	
Australia	
Andrew Thomson / Alena Broesder	+61 2 9250 0000
United Kingdom	
Charlie Cryer	+44 20 3440 6800
JOINT BROKER	
Stockdale Securities	
United Kingdom	
Corporate Finance- Robert Finlay/ Ed Thomas	+44 20 7601 6100
Sales- Zoe Alexander	
PUBLIC RELATIONS	
Camarco	
United Kingdom	
Gordon Poole / Nick Hennis	+44 20 3757 4997

Market Abuse Regulation (MAR) Disclosure

The information communicated in this announcement includes inside information for the purposes of Article 7 of Regulation 596/2014.

Forward Looking Statement

All statements other than statements of historical fact included in this announcement including, without limitation, statements regarding future plans and objectives of Metminco are forward-looking statements. When used in this announcement, forward-looking statements can be identified by words such as "anticipate", "believe", "could", "estimate", "expect", "future", "intend", "may", "opportunity", "plan", "potential", "project", "seek", "will" and other similar words that involve risks and uncertainties.

These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, its directors and management of Metminco that could cause Metminco's actual results to differ materially from the results expressed or anticipated in these statements.

The Company cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements. Metminco does not undertake to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by applicable law and stock exchange listing.

COMPETENT PERSONS STATEMENT

The technical information contained in this presentation that relates to exploration results (excluding those pertaining to Mineral Resources and Reserves) is based on information compiled by Mr Gavin Daneel, who is a Member of the Australasian Institute of Mining and Metallurgy and who is an independent Consulting Geologist. Mr Daneel has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and to qualify as a Qualified Person for the purposes of the AIM Rules for Companies. Mr Daneel consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

The Company is not aware of any new information or data that materially affects the information included in this announcement.

Metminco Limited ABN 43 119 759 349 ASX Code: MNC.AX; AIM Code: MNC.L

Suite 3, Level 3, 470 Collins Street, Melbourne, Victoria, 3000 Tel: +61 (0) 3 9867-7199; Fax: +61 (0) 3 9867-8587

www.metminco.com.au

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Soil samples were obtained from the C-Horizon, bagged and tagged with unique sample identity numbers, transported and submitted to ALS Colombia Ltda located in Medellin for sample preparation. Sample preparation included drying at <60°C, sieve sample to -180 micron (80 mesh) from which a representative 30g sample was obtained using a riffle splitter. Gold assays were obtained using a lead collection fire assay technique (FAA313) and assays for an additional 54 elements were obtained using multi-acid (four acid) digest (ICM40B) at ALS's laboratory in Lima, Peru. Details of the rock-chip sampling techniques are not known. The sample preparation and assaying techniques were the same as for the soil samples. Diamond drilling was used for historic holes drilled to obtain, on average, 1.8m samples (ranging from 0.5m to 4.1m) from which half core (cut using a diamond saw) was pulverized and a representative sample of 30g was used for fire assay, with an atomic adsorption spectrophotometer (AAS) finish. Diamond drilling was used for the current holes drilled to obtain, on average, 1.8m samples (ranging from 0.7m to 3.6m) from which half core (cut using a diamond saw) was pulverized and a representative sample of 30g was used for fire assay, with an atomic adsorption spectrophotometer (AAS) finish. Diamond drilling was used for the current holes drilled to obtain, on average, 1.8m samples (ranging from 0.7m to 3.6m) from which half core (cut using a diamond saw) was pulverized and a representative sample of 30g was used for fire assay, with an atomic adsorption spectrophotometer (AAS) finish for Au, and 48 other elements were assayed from a 0.25g representative sample using the four-acid super trace analytical method. All technical information relating to mineral exploration undertaken prior to 2018 that is contained within this announcement has been previously publicly disclosed to the extent required under the Canadian NI 43-101 standards during 2013 and 2014. Spec
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• The exploration drilling consisted of core recovered using diamond drilling methods from surface. Diamond core drilling was conducted by an independent contractor (Logan drilling Colombia SAS) based in Medellin. The holes were drilled using an HQ drill bit with the first 20 to 30 m drilled by HWT and cased. The core was not oriented.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Soil, laterite and saprolite recovered and sampled. Cored rock recovery was measured and recorded. RQD was also measured and recorded. Drill core was measured and regularised at the point of exchange from the drilling contractor to the company to ensure acceptable levels of sample

Criteria	JORC Code explanation	Commentary
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 recovery. Core recovery was good, and no significant intervals of core loss were recorded. Consequently, it is unlikely that any bias exists between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The core has been geologically logged and sampled to a level of detail to support geological modelling and mineralisation sufficient for use in a mineral resource estimate. The drill holes have been logged from beneath the soil cover (approximately 10m to 15m) to the end of hole in their entirety. Sampling of the drill core was generally undertaken on a 2 m interval basis, unless rock types or recoveries indicated a more appropriate sample interval.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Half core sampling every 2 m was undertaken with a diamond core saw, with individual samples bagged and recorded. The bagged samples were placed into larger bags that were tagged and labelled for transport in batches. All bagged samples were locked overnight in a special storage facility and each batch was transported by a locked company truck and company driver to Medellin. Sampling has been undertaken over a range of intervals reflecting significant changes in geology while attempting to maintain a 2m sample interval. This is appropriate for the stage of exploration and the style of mineralization of the prospect drilled. All technical information relating to mineral exploration undertaken prior to 2018 that is contained within this announcement has been previously publicly disclosed to the extent required under the Canadian NI 43-101 standards during 2013 and 2014. Specifically, earlier disclosures stated that the data, including the sampling data underlying the information in the earlier releases had been verified.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 and were independently assayed at the ALS laboratory in Lima, Peru. Gold was analyzed by fire assay on a 30-gram sample with atomic adsorption spectrophotometer (AAS) finish. Samples above 10.0 g/t Au were repeated by fire assay on a 30-gram sample with gravimetric finish. Multi-elements were analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) following multi-acid digestion. Blank, standard and duplicate samples were routinely inserted for quality assurance and quality control.

Criteria	JORC Code explanation	Commentary
		independent external consultant for their analysis. Preliminary results indicate that acceptable levels of accuracy and precision have been established.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Half core samples including blanks, duplicates and standards were forwarded to ALS laboratories in Medellin for analysis. The results received from the laboratory were then cleared of the blanks, duplicates and standards and the remainder reported and recorded separately. Samples requiring further checking then submitted to a second laboratory (SGS in Medellin) for independent analysis using a comparable analytical technique. All pulps and rejects return to the company storage facility in Quinchia. No holes have been twinned. All results are stored in both hard copy and soft copy in dedicated cabinets and site computers respectively along with a second soft copy on the company server in Medellin. No adjustments have been made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The collar locations were surveyed using a differential GPS and the downhole down hole surveys were undertaken at 30m depth increments using a reflex instrument. Locational data has been surveyed and recorded using a variety of grid systems (including WGS 84 / Zone 18 North) but spatial records have reportedly been standardized using the MAGNA-SIRGAS / Colombia Bogota zone grid system. Topographic control has been taken from LiDAR data that was captured by a Riegl VQ-480, laser mounted in a Hughes 500 helicopter. The data was collected in two flights occurring on April 3 and 4, 2012 which cover the Tesorito Prospect area. This survey techniques produces topographic control of a high quality and adequacy.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Soil samples were taken on a regular grid, from sites located on a 50m spacing along 200m separated grid lines. Rock-chip samples have been taken discontinuously along road cuttings and drainage channels. Seven diamond drill holes have been drilled, located between 102m and 190m apart. The number and spacing of the holes drilled to date is not sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource Estimate.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to 	 The nature and extent of the geochemical sampling (soil and rock-chip) achieves an unbiased representation of the distribution of the elements assayed. The orientation of the drilling is generally orthogonal to the geology. However, insufficient drilling has been undertaken to date to establish a reasonable

Criteria	JORC Code explanation	Commentary
	have introduced a sampling bias, this should be assessed and reported if material.	understanding on the geometry of the mineralisation. Consequently, the extent of any higher-grade intercepts returned from drilling may not represent the true-width of the higher-grade mineralization.
Sample security	The measures taken to ensure sample security.	• Core is secured at drill site by armed guard on a 24/7 basis, delivered by truck from drill site to the regional project core handling facility at Quinchia. All core and samples are secured in a locked facility at Quinchia and further secured by armed guard on a 24/7 basis. Each batch of samples are transferred in a locked vehicle and driven 165 km to ALS laboratories for sample preparation in Medellin.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 A representative of an independent external consultancy, Resource Development Associates Inc. based in the US, visited site prior to drilling commencing to design sampling and QAQC protocols. The analysis of the QAQC records is currently being conducted and will be reported once completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Independent legal authorities have determined that as of 20th December 2017: All of the Mining Titles were validly issued pursuant to the Former Mining Code or the Mining Code, as applicable on their date of issuance or execution. Concession Agreement grants its holders the exclusive right to explore for and exploit all mineral substances on the parcel of land covered by such concession agreement. There are no outstanding encumbrances or charges registered against the Mining Titles at the National Registry. The Concession Agreement have been duly registered in the name of Miraflores Compañía Minera in the National Registry as tabulated in Appendix B of ASX announcement titled : DRILLING AT TESORITO CONFIRMS AND EXPANDS GOLD BEARING PORPHYRY" and released on the 31st July 2018. The granted tenements, (shown in green and cyan), tenements under application (shown in red) and those subject to an Option Agreement with AngloGold Ashanti (shown in shades of yellow and orange) are illustrated in Appendix of ASX announcement titled : DRILLING AT TESORITO CONFIRMS AND EXPANDS GOLD BEARING PORPHYRY" and released on the 31st July 2018. Decree 1374 of June 27, 2013, established the measures to indicate, in a

Criteria	JORC Code explanation	Commentary
		TEMPORARY MANNER, some reserves of natural resources, which in the future may be declared "zones excluded from mining". The degree to which this impacts on the rights attached to pre-existing exploration and exploitation concessions is unclear.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Artisanal gold production was most significant from the Miraflores mines during the 1950's. Interest was renewed in the area in the late 1970's. In the 1980's the artisanal mining cooperative "Asociación de Mineros de Miraflores" (AMM) was formed.
		 In 2000, the Colombian government's geological division, INGEOMINAS, with the permission of the AMM, undertook a series of technical studies at Miraflores, which included geological mapping, geochemical and geophysical studies, and non-JORC compliant resource estimations.
		 In 2005, Sociedad Kedahda S.A. (Kedahda), now called AngloGold Ashanti de Colombia S.A., a subsidiary of AngloGold Ashanti Ltd., entered into an exploration agreement with the AMM, and carried out exploration including diamond drilling in 2005 to 2007 at Miraflores, completing 1,414.75m. In 2007 Kedahda optioned the project to B2Gold Corp. (B2Gold), which carried out exploration including additional diamond drilling from 2007 to 2009, 2210.1 m. B2Gold made a NI 43-101 technical study of the Miraflores Project in 2007. On March 24, 2009, B2Gold advised the AMM that it had decided not to make further option payments and the property reverted to AMM under the terms of the option agreement. Seafield signed a sale-purchase contract with AMM to acquire a 100% interest in the Mining Contract on April 16, 2010. Seafield completed the payments to acquire 100% of rights and obligations on the Miraflores property in November 30, 2012. AMM stopped the artisanal exploitation activities in the La Cruzada tunnel on the same date, November 30, 2012 and transferred control of the mine to Seafield. Since June 2010, Seafield has drilled 63 drillholes for a total of 22,259.25m on the adjacent Miraflores Project. The initial exploration undertaken by Seafield at Tesorito in 2012 and 2013 included systematic geological mapping, rock and soil sampling, followed by trenching within the area of anomalous Au and Cu in soils. Seafield commissioned an Induced Polarisation (IP) survey over the Tesorito Prospect in August 2012 and undertook a three-hole diamond drilling program for a total of 1,150.5m in 2013.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Tesorito area is underlain mainly by fine to coarse grained, intrusive porphyritic rocks of granodioritic to dioritic composition, which intrude basaltic rocks of the Barroso Formation of Cretaceous age and Tertiary sandstones and mudstones of the Amaga Formation. The intrusives show variable intensities of

Criteria	JORC Code explanation	Commentary
		 hydrothermal alteration, including potassic alteration overprinted by quartz-sericite and sericite-chlorite alteration. NNE, NNW and NW faulting controls the intrusive emplacement and mineralization, including faulting of contacts between the rock units. The depth of sulphide oxidation observed in the drill holes is approximately 20 m. The porphyry-style mineralization of gold, copper and molybdenite observed in the Tertiary intrusive rocks is found as sulphides and magnetite in disseminations as well as in veinlets and stockworks of quartz. Pyrite, chalcopyrite, molybdenite, and minor bornite are the main sulphides observed.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The results have been reported for all drilling undertaken on the Tesorito Prospect to date (including the first three holes TS_DH_01 – 03) which were drilled by the previous owners of the project. The drill hole information including assay results for selected elements (Au, Ag, Cu and Mo) has been compiled and tabulated. See Appendix B accompany this Table 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The significant intervals are reported for holes TS_DH_01 to TS_DH_06 based on a compositing process where continuous mineralised intervals having a weighted average grade of 0.5 g/t Au or greater of continuous sample run lengths of at least 10m and allowing for up to 5m of internal dilution, and no more than 2m of dilution on either end. The significant intervals are reported for hole TS_DH_07 based on a compositing process where continuous mineralised intervals having a weighted average grade of 1.0 g/t Au or greater of continuous sample run lengths of at least 10m and allowing for up to 5m of internal dilution, and no more than 2m of dilution on either end. The significant intervals are reported for hole TS_DH_07 based on a compositing process where continuous mineralised intervals having a weighted average grade of 1.0 g/t Au or greater of continuous sample run lengths of at least 10m and allowing for up to 5m of internal dilution, and no more than 2m of dilution on either end. The summary intercepts highlighted in bold are inclusive of the intercepts determined using the above method and include all the intervening assay results over the reported intervals. No cutting of high grades has been done. No metal equivalent grades have been reported for the Tesorito drilling results.
Relationship between mineralisation widths and intercept	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are 	 The drilling has been directed to be orthogonal to the regional trend of the geology. The intercepts reported are down hole length, true widths are not known at this early stage of drilling.

Criteria	JORC Code explanation	Commentary
lengths	reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Geological map showing exploration results including drilling over the Tesorito Prospect is shown in Figure 2. Sectional views of each of the drill holes are shown in Figure 4 and Appendix C
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Combined and included selected intervals of assay results are tabulated in this announcement and shown on the sections (Figure 4 and Appendix C) accompanying this Table 1.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 An IP survey, conducted over the Tesorito target zone in August 2012, presented anomalies with high values of chargeability that can be in response to high contents of sulphides and/or the presence of hydrothermal alteration clays. The anomaly covers an area of 500m by 700m and is stronger 50m below the surface to the west of the area anomalous for gold in soil and rock-chips.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling is required to systematically test the nature and extent of both the higher-grade mineralization that appears to be associated with NNW trending sheeted veins, as well as the broader intercepts of NNE-trending moderate-grades related to the porphyry-style mineralization. The causative geology and associated mineralogy accounting for the significant chargeability anomaly needs to be further investigated.

Appendix B

Drilling Results Table

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
TS_DH_0 1	423950	584525	121 3	317	-50	350	10.5	11.8	1.3	D-25811	0.108	0.46	77.1	4.83
			-				11.8	14.4	2.6	D-25812	0.225	0.48	91.5	2.79
							14.4	16.3	1.9	D-25813	0.176	0.35	72.1	3.31
							16.3	18	1.7	D-25814	0.162	0.19	163.5	1.94
							18	19.3	1.3	D-25815	0.158	0.13	136	1.19
							19.3	21.5	2.2	D-25817	0.115	2.37	96	1.9
							21.5	23.5	2	D-25818	0.119	0.18	109	1.97
							23.5	25.7	2.2	D-25819	0.15	0.16	114.5	3.1
							25.7	26.8	1.1	D-25820	0.09	0.07	41.6	0.77
							26.8	28.2	1.4	D-25822	0.117	0.13	53.1	2.9
							28.2	30.3	2.1	D-25823	0.376	0.73	327	20.6
							30.3	32.3	2	D-25824	0.411	0.26	393	41.5
							32.3	34.3	2	D-25825	0.193	0.18	179	12.5
							34.3	36.3	2	D-25826	0.303	0.24	323	32.7
							36.3	38.2	1.9	D-25827	0.083	0.1	82.1	16.1 5
							38.2	41.6	3.4	D-25828	0.211	0.17	139.5	5.44
							41.6	43.6	2	D-25829	0.202	0.24	138	6.14
							43.6	45.5	1.9	D-25830	0.263	0.26	190	3.36
							45.5	47.7	2.2	D-25831	0.186	0.26	204	1.44
							47.7	49.7	2	D-25832	0.143	0.29	130	0.3
							49.7	51.7	2	D-25834	0.213	0.24	192.5	0.36
							51.7	53.7	2	D-25835	0.111	0.15	79.8	0.75
							53.7	55.7	2	D-25836	0.14	0.21	124	0.53
	1						55.7	57.7	2	D-25837	0.056	0.19	45.3	0.22
							57.7	59.7	2	D-25838	0.082	0.13	92	0.3

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							59.7	61.4	1.7	D-25839	0.101	0.11	76.4	0.31
							61.4	62.4	1	D-25840	0.19	0.27	147	0.98
							62.4	63.5	1.1	D-25841	0.123	0.16	82	0.26
							63.5	64.7	1.2	D-25842	0.189	0.15	87.8	0.34
							64.7	65.85	1.15	D-25844	0.152	0.26	80.5	0.67
							65.85	66.5	0.65	D-25845	0.034	0.06	62.9	1.53
							66.5	68.5	2	D-25847	0.037	8.01	3550	3.34
							68.5	71.4	2.9	D-25848	0.139	0.49	132.5	14
							71.4	75.5	4.1	D-25849	0.077	2.07	86.6	2.84
							75.5	77.5	2	D-25850	0.108	0.21	51.2	0.97
							77.5	79.5	2	D-25851	0.133	0.19	75	1.79
							79.5	81.5	2	D-25852	0.145	0.32	95.9	3.09
							81.5	83.5	2	D-25853	0.279	0.34	248	17.5 5
							83.5	85	1.5	D-25855	0.346	0.29	249	18.1 5
							85	86.5	1.5	D-25856	0.653	0.56	549	42.8
							86.5	88.5	2	D-25857	0.445	0.42	420	171
							88.5	90.5	2	D-25859	0.322	0.22	236	17.2 5
							90.5	92.5	2	D-25860	0.26	0.23	179	17.5
							92.5	94.5	2	D-25861	0.308	0.22	191.5	6.38
							94.5	95.7	1.2	D-25862	0.227	0.29	174	17.9 5
							95.7	96.9	1.2	D-25863	0.427	0.31	266	96.8
							96.9	99	2.1	D-25865	0.555	0.82	414	36.7
							99	101	2	D-25866	0.217	0.2	97	37.1
							101	102.7	1.7	D-25867	0.298	0.22	180.5	52.1
							102.7	104.7	2	D-25868	0.365	0.31	216	98.4
							104.7	106.7	2	D-25869	0.302	0.29	234	40.1
							106.7	108.7	2	D-25870	0.436	0.28	256	22.7
							108.7	110.1	1.4	D-25871	0.204	0.25	140.5	26.9
							110.1	111.5	1.4	D-25873	0.31	0.17	109	12.1 5

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							111.5	113	1.5	D-25874	0.407	0.45	303	61.7
							113	114.5	1.5	D-25875	0.546	1.28	392	31.9
							114.5	116.1	1.6	D-25876	0.244	0.58	127	17.7 5
							116.1	118.1	2	D-25877	0.151	0.25	129	8.16
							118.1	120.1	2	D-25878	0.534	0.45	475	24
							120.1	122.1	2	D-25879	0.513	0.43	393	47
							122.1	124.1	2	D-25881	0.534	0.4	388	53
							124.1	126.1	2	D-25882	0.488	0.54	484	41.1
							126.1	128.1	2	D-25884	0.355	0.83	337	25.5
							128.1	130.1	2	D-25885	0.301	0.31	236	17.9 5
							130.1	132.1	2	D-25886	0.376	0.37	272	15.8
							132.1	134.1	2	D-25887	0.583	0.46	329	114
							134.1	136.1	2	D-25888	0.459	0.45	344	85
							136.1	138.1	2	D-25889	0.301	0.25	177.5	27.2
							138.1	140.1	2	D-25890	0.334	0.34	257	18.1 5
							140.1	142.1	2	D-25891	0.317	0.27	229	26.9
							142.1	144.1	2	D-25892	0.58	0.44	424	46.1
							144.1	146.1	2	D-25893	0.381	0.31	202	30.6
							146.1	148.1	2	D-25894	0.138	0.22	79.1	11.2
							148.1	149.5	1.4	D-25896	0.142	0.32	95.9	14.4 5
							149.5	150.8	1.3	D-25897	0.296	0.28	189	83
							150.8	151.8	1	D-25898	0.262	0.25	172.5	22.6
							151.8	153.8	2	D-25899	0.216	0.24	193.5	24.9
							153.8	155.8	2	D-25901	0.28	0.25	185.5	34.4
							155.8	157.8	2	D-25902	0.225	0.21	163.5	39.4
		1					157.8	159.8	2	D-25903	0.218	0.17	164	28.9
							159.8	161.8	2	D-25904	0.399	0.19	172.5	30.3
		1					161.8	163.4	1.6	D-25906	0.191	0.15	93.4	14.8
							163.4	164.9	1.5	D-25907	0.329	0.17	139	29.1

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							164.9	166.4	1.5	D-25908	0.284	0.21	246	14.1
							166.4	167.4	0.95	D-25909	0.459	0.22	197	48.8
							167.3 5	168.8	1.45	D-25910	0.258	0.19	201	10.7 5
							168.8	170.3	1.5	D-25911	0.178	0.15	119	5.83
							170.3	171.9	1.6	D-25912	0.713	0.28	420	14.5
							171.9	173.4	1.5	D-25913	0.162	0.14	131	8.21
							173.4	175.4	2	D-25914	0.214	0.19	151.5	11.2
							175.4	177.4	2	D-25915	0.285	0.14	129.5	11.0 5
							177.4	179.4	2	D-25916	0.693	0.35	405	9.42
							179.4	181	1.6	D-25917	0.431	0.31	255	21.7
							181	182.5	1.5	D-25918	0.345	0.32	235	22.7
							182.5	184.5	2	D-25920	0.306	0.3	220	29.4
							184.5	186.5	2	D-25921	0.571	0.58	594	80.8
							186.5	188.5	2	D-25922	0.431	0.63	456	16.8
							188.5	190.5	2	D-25924	0.582	0.66	532	26
							190.5	192.5	2	D-25925	0.732	0.49	475	21.7
							192.5	194.5	2	D-25926	0.641	0.45	465	64.2
							194.5	196.5	2	D-25927	0.734	0.7	624	22
							196.5	198.5	2	D-25928	0.401	0.37	372	17.6 5
							198.5	200.1	1.6	D-25930	0.743	0.52	465	45.7
							200.1	201.7	1.6	D-25931	0.857	0.54	582	33.4
							201.7	203.7	2	D-25932	0.238	0.18	181	20.2
							203.7	205.7	2	D-25933	0.581	0.4	340	11.6
							205.7	207.7	2	D-25934	0.341	0.35	308	34.6
							207.7	209.7	2	D-25935	0.554	0.46	543	28.9
							209.7	211.7	2	D-25936	0.529	0.66	438	32.7
							211.7	213.7	2	D-25938	0.314	0.39	306	25.7
			1				213.7	215.7	2	D-25939	0.566	0.45	475	20.5
							215.7	217.7	2	D-25940	0.546	0.53	500	58.3
							217.7	219.6	1.9	D-25942	0.27	0.31	249	6.62

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							219.6	220.5	0.9	D-25943	0.849	0.41	658	30.2
							220.5	222.5	2	D-25944	0.547	0.35	403	21.1
							222.5	224	1.5	D-25945	0.133	0.19	121	48.3
							224	225.5	1.5	D-25947	0.272	0.31	201	25.6
							225.5	227	1.5	D-25948	0.345	0.36	240	60.4
							227	227.8 5	0.85	D-25949	0.378	0.52	485	104
							227.8 5	229.5	1.65	D-25950	0.625	1.3	607	105. 5
							229.5	231.1	1.6	D-25951	0.496	0.68	498	24.5
							231.1	232.7	1.6	D-25952	0.335	0.62	410	20.9
							232.7	233.6	0.9	D-25953	0.489	0.66	573	63.8
							233.6	235.6	2	D-25954	0.162	0.27	141	14
							235.6	237.6	2	D-25955	0.526	0.52	403	30.5
							237.6	239.6	2	D-25957	0.321	0.59	228	8.82
							239.6	241.4 5	1.85	D-25958	0.362	0.58	315	16.7 5
							241.4 5	243.4	1.95	D-25959	0.498	0.83	412	20.6
							243.4	245.4	2	D-25960	0.564	1.31	578	42.2
							245.4	247.4	2	D-25961	0.481	1.37	428	60.2
							247.4	249.4	2	D-25962	0.587	0.86	522	32.4
							249.4	251	1.6	D-25963	0.833	2.54	671	17.8
							251	252.6	1.6	D-25965	0.784	1.82	631	24.4
							252.6	254	1.4	D-25967	0.763	1.99	682	19.9
							254	256.0 5	2.05	D-25968	0.964	2.2	602	23.2
							256.0 5	258.1	2.05	D-25969	3.48	14.8	1630	12.6 5
							258.1	260	1.9	D-25970	0.477	0.51	371	9.24
							260	262	2	D-25971	0.973	0.99	825	49.3
							262	264	2	D-25972	0.527	0.85	443	12.9 5
							264	266	2	D-25973	0.836	0.38	655	23.2
							266	268	2	D-25974	0.829	0.49	807	18.2

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							268	270	2	D-25975	0.761	0.55	748	58.1
							270	272	2	D-25976	0.645	0.39	715	19.9
							272	274	2	D-25978	0.447	0.22	312	20.9
							274	276	2	D-25979	0.672	0.41	585	37.2
							276	278	2	D-25980	0.166	0.18	125.5	18.8 5
							278	280	2	D-25981	0.199	0.27	208	9.65
							280	282	2	D-25982	0.48	0.38	492	15.7
							282	284	2	D-25983	0.232	0.3	297	15.3 5
							284	286	2	D-25985	0.208	0.29	225	19.0 5
							286	288	2	D-25986	0.261	0.25	224	9.77
							288	290	2	D-25988	0.579	0.38	441	17.5
							290	292	2	D-25989	0.685	0.53	429	61.9
							292	294	2	D-25990	0.792	0.42	491	17.9
							294	296	2	D-25991	0.579	0.51	454	18.4
							296	298	2	D-25992	0.376	0.29	289	11.9
							298	299.6 5	1.65	D-25993	1.2	0.88	1085	29.4
							299.6 5	301.3	1.65	D-25994	0.548	0.44	370	15.9
							301.3	302.6 5	1.35	D-25995	0.23	0.27	170	9.82
							302.6 5	304	1.35	D-25996	0.335	0.31	226	16.8 5
							304	305.6	1.6	D-25997	0.149	0.21	151.5	14.6 5
							305.6	307.6	2	D-25998	0.353	0.35	231	17.4 5
							307.6	309.6	2	D-26000	0.693	0.41	420	51.4
							309.6	311.6	2	D-26826	0.168	0.22	140.5	10.6 5
							311.6	313.6	2	D-26827	0.203	0.32	196.5	9.46
							313.6	315.3	1.7	D-26828	0.197	0.31	174	10.6
							315.3	317	1.7	D-26830	0.593	0.58	411	24.8

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							317	318.9	1.9	D-26831	0.481	0.26	293	43
							318.9	320.9	2	D-26832	0.412	0.24	201	9.36
							320.9	322.9	2	D-26833	0.351	0.26	181	9.07
							322.9	324.9	2	D-26835	0.297	0.37	278	8.9
							324.9	326.9	2	D-26836	0.356	0.43	290	9.8
							326.9	328.4 5	1.55	D-26837	0.36	0.44	312	13.1 5
							328.4 5	330	1.55	D-26838	1.305	0.57	537	31.1
							330	332	2	D-26839	0.273	0.62	147.5	17.3
							332	333.6 5	1.65	D-26840	0.366	0.25	200	8.18
							333.6 5	335.4	1.75	D-26842	0.246	0.22	143	5.03
							335.4	336.8 5	1.45	D-26843	0.197	0.28	165	6.89
							336.8 5	339	2.15	D-26844	0.174	0.21	109	6.08
							339	340.1	1.1	D-26845	0.235	0.38	128.5	19.1 5
							340.1	341.8	1.7	D-26846	0.212	0.25	105.5	6.32
							341.8	343.5	1.7	D-26847	0.466	0.37	186.5	22.1
							343.5	345.2	1.7	D-26848	0.445	0.59	199.5	11
							345.2	346.9	1.7	D-26850	0.205	0.22	84.5	18.2 5
							346.9	348.4 5	1.55	D-26851	0.226	0.19	93.5	25.6
							348.4 5	350	1.55	D-26852	0.586	3.04	207	14.4
TS_DH_0 2	423840	584369	121 0	315	-55	400	16	19	3	D-28500	1.645	1.06	1050	2.9
							19	20.5	1.5	D-28501	1.42	0.99	1520	21.4
							20.5	22	1.5	D-28502	0.855	0.9	1000	42.3
							22	23.8	1.8	D-28503	0.243	0.64	475	18.7
							23.8	26	2.2	D-28504	0.44	0.82	447	21.4
							26	27.7	1.7	D-28506	0.436	0.76	478	18.6 5

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							27.7	29.05	1.35	D-28507	0.534	0.57	671	22.1
							29.05	30.4	1.35	D-28508	0.679	0.78	717	32
							30.4	31.8	1.4	D-28509	0.728	0.51	577	47.7
							31.8	33.2	1.4	D-28510	0.931	0.65	856	15.6
							33.2	35.2	2	D-28511	0.771	0.96	740	41.8
							35.2	36.45	1.25	D-28512	0.623	0.66	423	20.9
							36.45	37.5	1.05	D-28513	1.155	0.97	1000	26.5
							37.5	39.15	1.65	D-28514	0.467	0.68	564	22.7
							39.15	40.45	1.3	D-28515	1.24	0.74	923	23.5
							40.45	42.2	1.75	D-28516	0.777	0.54	602	14.8 5
							42.2	43.9	1.7	D-28517	1.01	0.9	641	17.0 5
							43.9	45.6	1.7	D-28519	0.53	0.56	431	15.0 5
							45.6	47.35	1.75	D-28520	1.025	0.58	699	13.8
							47.35	48.75	1.4	D-28521	0.445	0.44	147	11.0 5
							48.75	50.25	1.5	D-28522	1.41	0.98	1150	62.5
							50.25	51.45	1.2	D-28523	2.16	1.4	1860	31.5
							51.45	52.65	1.2	D-28525	0.74	0.68	730	14.5
							52.65	53.9	1.25	D-28526	0.605	0.47	498	13.9
							53.9	55.6	1.7	D-28527	0.8	0.77	708	25.8
							55.6	57.6	2	D-28528	1.765	0.78	1230	32.2
							57.6	59.5	1.9	D-28529	2.2	1.33	1280	27.4
							59.5	61.5	2	D-28531	0.701	0.52	484	23
							61.5	63.5	2	D-28532	1.32	0.58	524	53.3
							63.5	65.2	1.7	D-28533	0.339	0.38	302	28
							65.2	67.2	2	D-28534	1.73	0.71	1040	33.2
							67.2	69.2	2	D-28535	2.02	0.8	1330	20.9
							69.2	71.2	2	D-28536	1.385	0.65	991	21
							71.2	73.2	2	D-28537	1.365	0.74	1010	22.7
							73.2	75.2	2	D-28538	1.64	1.02	1220	25.3

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							75.2	77.2	2	D-28539	1.895	0.7	1080	23.2
							77.2	79.2	2	D-28541	0.687	1.24	654	23.9
							79.2	81.2	2	D-28542	0.93	0.8	863	15.3 5
							81.2	83.2	2	D-28543	0.753	0.53	521	17.5
							83.2	85.2	2	D-28544	0.28	0.36	185.5	2.56
							85.2	87.2	2	D-28546	0.311	0.26	139.5	5.2
							87.2	88.3	1.1	D-28547	0.074	0.19	85.5	2.35
							88.3	90.3	2	D-28548	1.325	0.93	1180	23
							90.3	91.3	1	D-28550	0.855	0.98	725	23.4
							91.3	92.8	1.5	D-28551	0.88	0.55	642	28.6
							92.8	94.8	2	D-28552	1.31	1.06	1100	33.4
							94.8	96.8	2	D-28553	1.485	1.24	865	28.9
							96.8	98.3	1.5	D-28554	1.4	0.89	765	70.9
							98.3	99.15	0.85	D-28555	0.868	1.13	1010	22.6
							99.15	101.1 5	2	D-28556	1.75	1.42	788	24.3
							101.1 5	103.1 5	2	D-28557	1.035	0.83	583	12.9
							103.1 5	105.1 5	2	D-28559	1.02	0.93	523	23.8
							105.1 5	107.1 5	2	D-28560	0.706	0.59	321	18.6
							107.1 5	109.1 5	2	D-28561	0.515	0.49	381	21.4
							109.1 5	110.3 5	1.2	D-28562	1.085	0.66	556	20.1
							110.3 5	111.5 5	1.2	D-28563	0.985	0.62	552	20.5
							111.5 5	113.1	1.55	D-28564	1.24	1.55	610	21.7
							113.1	114.6	1.5	D-28565	1.79	1.28	995	15.9 5
							114.6	115.2	0.6	D-28566	1.385	0.55	769	13.4
							115.2	116.4	1.2	D-28568	1.065	0.49	563	15.1
							116.4	117.5	1.1	D-28569	0.91	0.57	463	18.7 5

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							117.5	118.6 5	1.15	D-28570	0.796	0.53	456	11.8
							118.6 5	119.2	0.55	D-28571	1.055	1.14	1350	49.9
							119.2	119.8 5	0.65	D-28573	1.25	1.24	2090	133. 5
							119.8 5	121.8 5	2	D-28574	1.305	1.16	1105	40.4
							121.8 5	123.8 5	2	D-28575	0.997	1.17	822	37.7
							123.8 5	125.8 5	2	D-28576	1.1	1.92	1095	160
							125.8 5	127.8 5	2	D-28577	1.02	2.37	1155	29
							127.8 5	129.8 5	2	D-28578	0.939	1.5	641	58
							129.8 5	130.7	0.85	D-28579	0.962	0.82	555	87.2
							130.7	132.7	2	D-28580	1.155	0.72	785	52.7
							132.7	133.9	1.2	D-28581	1.01	0.86	762	81.5
							133.9	135.1	1.2	D-28583	1.935	0.92	1165	31.3
							135.1	136.2 5	1.15	D-28584	1.65	1.17	1195	55.5
							136.2 5	136.7 5	0.5	D-28585	1.07	0.37	758	21.7
							136.7 5	138.7 5	2	D-28586	3.93	0.92	1955	35
							138.7 5	140.7 5	2	D-28587	2.3	1.59	1520	17.7 5
							140.7 5	142.1 5	1.4	D-28588	0.929	0.48	1000	17.8
							142.1 5	143.7 5	1.6	D-28589	2.08	0.82	1190	25
							143.7 5	145.4	1.65	D-28590	2.03	0.79	840	28.2
							145.4	147.1	1.7	D-28591	1.43	0.83	1035	22.7
							147.1	148.2 5	1.15	D-28592	1.2	0.55	427	11.7 5
							148.2 5	150.2 5	2	D-28594	0.695	0.72	657	27.3

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							150.2 5	152.2 5	2	D-28595	0.602	0.89	833	37.7
							152.2 5	154.2 5	2	D-28596	1.015	1.31	876	28.6
							154.2 5	155.1 5	0.9	D-28597	1.12	0.81	789	27.9
							155.1 5	157.1 5	2	D-28598	2.22	1.39	1695	38.1
							157.1 5	159.1 5	2	D-28600	2.6	0.98	1070	20.9
							159.1 5	161.1 5	2	D-28601	1.42	1.02	1270	59.3
							161.1 5	163.1 5	2	D-28602	3.31	1.37	1970	70.6
							163.1 5	164.0 5	0.9	D-28603	2.45	0.61	1300	57.8
							164.0 5	166.0 5	2	D-28605	2.23	0.85	1300	65.5
							166.0 5	167.6	1.55	D-28606	1.19	0.65	827	69.2
							167.6	168.7 5	1.15	D-28607	1.23	0.94	1150	60.8
							168.7 5	170.1 5	1.4	D-28608	0.82	0.74	725	33.4
							170.1 5	171.5 5	1.4	D-28609	1.38	1.1	1190	47.4
							171.5 5	173	1.45	D-28610	2.3	2.19	1660	56.8
							173	173.8	0.8	D-28611	1.195	1.2	733	21.2
							173.8	175.8 5	2.05	D-28612	0.877	0.87	823	9.7
							175.8 5	177.9	2.05	D-28613	0.588	0.53	423	12.3
							177.9	179.8	1.9	D-28614	0.995	0.72	575	12.5 5
							179.8	181.5	1.7	D-28615	1.105	0.7	745	8.73
							181.5	182.5	1	D-28616	1.57	1.43	1440	1150
							182.5	184.5	2	D-28618	0.79	0.49	574	9.95
				1			184.5	186.5	2	D-28619	2.15	1.06	1410	22.6

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							186.5	188.5	2	D-28620	0.972	0.79	969	193
							188.5	190.5	2	D-28621	1.605	2.66	2220	43.4
							190.5	192.2	1.7	D-28622	1.55	3.81	1620	13.9 5
							192.2	192.9 5	0.75	D-28623	0.804	0.7	677	28.8
							192.9 5	194.9 5	2	D-28624	1.355	0.77	749	8.75
							194.9 5	196.9 5	2	D-28625	1.155	0.45	896	7.82
							196.9 5	198.9 5	2	D-28626	1.115	0.7	758	6.96
							198.9 5	200.9 5	2	D-28628	0.701	0.59	506	5.65
							200.9 5	202.9 5	2	D-28629	1.055	0.76	661	8.42
							202.9 5	204.9 5	2	D-28630	0.833	0.83	656	6.36
							204.9 5	206.6	1.65	D-28631	0.934	0.76	706	22.2
							206.6	208.3	1.7	D-28632	1.285	0.82	841	9.77
							208.3	210	1.7	D-28633	1.14	0.66	676	18.6
							210	211.1	1.1	D-28635	0.854	1.42	532	8.46
							211.1	212.9 5	1.85	D-28636	0.756	0.38	520	9.47
							212.9 5	214.9	1.95	D-28637	0.97	0.35	640	8.81
							214.9	216.9	2	D-28638	0.58	0.48	342	7.34
							216.9	218.9	2	D-28639	1.405	0.41	695	7.32
							218.9	220.9	2	D-28640	0.754	0.29	518	6.15
							220.9	222.9	2	D-28641	0.788	0.4	520	6.55
							222.9	224.9	2	D-28642	1.3	0.59	672	4.48
							224.9	226.9	2	D-28644	0.67	0.66	363	7.18
							226.9	228.9	2	D-28645	0.596	0.37	357	7.07
							228.9	230.9	2	D-28646	0.695	0.46	483	9.34
							230.9	232.9	2	D-28647	0.529	0.46	418	9.5
							232.9	234.9	2	D-28649	1.24	0.78	641	15.4

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							234.9	236.9	2	D-28650	0.588	0.41	278	8.23
							236.9	238.9	2	D-28651	4.66	3.04	1620	13.0 5
							238.9	240.9	2	D-28653	1.145	0.31	465	11.5
							240.9	242.9	2	D-28654	0.636	0.34	330	12.4
							242.9	244.9	2	D-28655	1.115	0.52	458	15.1 5
							244.9	246.9	2	D-28656	0.524	0.57	415	12.4
							246.9	248.9	2	D-28657	0.529	0.42	255	4.11
							248.9	250.9	2	D-28658	0.071	0.11	31.5	0.96
							250.9	252.8 5	1.95	D-28659	0.169	0.3	111.5	4.44
							252.8 5	254.1	1.25	D-28660	0.329	0.23	92.9	5.63
							254.1	255.4	1.3	D-28661	0.691	0.37	214	5.33
							255.4	257.4	2	D-28662	0.731	0.64	386	12.2 5
							257.4	259.4	2	D-28663	0.316	0.31	244	8.99
							259.4	261.4	2	D-28664	0.441	0.4	320	10.3
							261.4	263.4	2	D-28666	0.465	0.6	310	49.4
							263.4	265.1	1.7	D-28667	0.188	0.42	144.5	15.9
							265.1	266.5	1.4	D-28668	0.996	6.84	409	39.2
							266.5	267.9	1.4	D-28669	0.322	0.26	225	9.99
							267.9	269.3 5	1.45	D-28671	0.48	0.36	310	13.2 5
							269.3 5	271.3 5	2	D-28672	0.535	0.45	463	14.2
							271.3 5	273.3 5	2	D-28673	0.382	0.64	323	11.6
							273.3 5	5	2	D-28674	1.395	1.8	1070	14.9
							275.3 5	277.3 5	2	D-28676	0.636	0.69	502	16.6 5
							277.3 5	279.3 5	2	D-28677	1.19	0.88	1310	19.3
							279.3 5	281.3 5	2	D-28678	1.02	0.66	773	19.4

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
				,			281.3 5	283.3 5	2	D-28679	0.768	0.87	720	19.6 5
							283.3 5	285	1.65	D-28680	1	0.53	519	13.1 5
							285	285.5	0.5	D-28681	0.486	0.54	417	19.4
							285.5	287.5	2	D-28682	0.741	0.48	476	13.8 5
							287.5	289.5	2	D-28683	0.46	0.47	344	13.7
							289.5	291.5	2	D-28684	1.13	0.63	723	12.0 5
							291.5	293.5	2	D-28686	2.02	1.18	1080	12.4
							293.5	295.5	2	D-28687	1.51	0.92	1215	13.4
							295.5	297.5	2	D-28688	0.511	0.62	615	14.1 5
							297.5	299.4	1.9	D-28689	0.507	0.68	519	12.2
							299.4	300.5	1.1	D-28690	0.392	0.71	360	9.45
							300.5	301.6	1.1	D-28691	0.361	0.46	389	9.01
							301.6	303.6	2	D-28693	0.853	0.85	624	7.66
							303.6	305.6	2	D-28694	0.527	0.66	572	8.86
							305.6	307	1.4	D-28695	0.423	0.97	707	8.83
							307	308.4	1.4	D-28697	0.682	0.6	230	10.1 5
							308.4	309.7 5	1.35	D-28698	0.215	0.51	288	13.6 5
							309.7 5	311.7 5	2	D-28700	0.793	0.89	811	14.0 5
							311.7 5	313.7 5	2	D-28701	0.5	0.39	389	9.06
							313.7 5	315.7 5	2	D-28702	0.452	0.51	451	8.65
							315.7 5	317.7 5	2	D-28703	0.477	0.87	480	10.2 5
							317.7 5	319.7 5	2	D-28704	0.453	0.57	378	13.7
							319.7 5	321.7	1.95	D-28705	0.525	0.55	483	13.1 5
							321.7	323.2	1.5	D-28706	1.24	1.1	1290	13.9 5

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							323.2	325.2	2	D-28707	0.872	0.77	709	18.2
							325.2	327.2	2	D-28708	0.665	0.63	679	16.2 5
							327.2	329.2	2	D-28709	1.195	1.06	996	14.3 5
							329.2	331.2	2	D-28710	0.514	1.36	458	12.1 5
							331.2	333.2	2	D-28711	0.652	0.68	638	12.8
							333.2	335.2	2	D-28713	0.463	0.49	592	15.6 5
							335.2	337.2	2	D-28714	0.308	0.53	381	13.6 5
							337.2	338.7	1.5	D-28715	0.68	0.6	684	13.1
							338.7	340.2	1.5	D-28716	0.745	0.3	411	13.7 5
							340.2	341.8	1.6	D-28717	1.605	0.73	444	12.7
							341.8	343.1	1.3	D-28718	1.55	1.79	538	17.8 5
							343.1	344.5	1.4	D-28720	0.719	1.68	361	15
							344.5	346.5	2	D-28721	0.808	1.5	396	15.5 5
							346.5	348.5	2	D-28723	0.984	1.91	690	26.5
							348.5	350.5	2	D-28724	1.255	0.52	633	49.5
							350.5	352.5	2	D-28725	1.425	0.58	1070	31.9
							352.5	356.5	4	D-28726	0.609	0.35	588	30
							356.5	358.5	2	D-28727	1.08	0.54	1050	63.3
							358.5	360.5	2	D-28728	1.1	0.44	751	39.7
							360.5	362.5	2	D-28730	0.72	0.43	682	16.8 5
							362.5	364.5	2	D-28731	1.4	1.14	1420	139. 5
							364.5	366.5	2	D-28732	0.811	0.85	988	54.8
							366.5	368.5	2	D-28733	0.52	0.95	961	41.8
							368.5	370.5	2	D-28734	1.25	0.93	1160	237
							370.5	372.5	2	D-28735	0.687	0.76	1080	81
							372.5	374.5	2	D-28736	0.621	0.53	550	78.3

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							374.5	376.5	2	D-28737	0.932	0.8	973	131. 5
							376.5	378.5	2	D-28738	0.504	0.57	842	46.7
							378.5	380.5	2	D-28740	1.125	0.83	1830	42.7
							380.5	382.5	2	D-28741	0.89	0.86	1440	70.6
							382.5	384.5	2	D-28742	1.04	1.25	2850	136. 5
							384.5	386.5	2	D-28743	0.45	1.16	1420	55
							386.5	388	1.5	D-28744	0.538	1.87	3850	81.5
							388	389.4 5	1.45	D-28745	0.317	1.47	2370	74
							389.4 5	390.8	1.35	D-28746	0.486	1.47	3080	66.3
							390.8	391.5	0.7	D-28747	3.43	6.67	2632 0	311
							391.5	393.5	2	D-28749	0.219	0.79	598	22.2
							393.5	395.5	2	D-28750	0.164	1.91	1370	33.3
							395.5	396.8	1.3	D-28751	0.238	0.61	560	14.3
							396.8	398	1.2	D-28752	0.276	0.83	788	14.1
							398	400	2	D-28753	0.502	0.71	514	29
TS_DH_0 3	423745	584330	123 4	315	-60	440.5	9.3	10.5	1.2	D-28779	0.494	0.89	536	1.89
							10.5	12.5	2	D-28780	0.331	0.41	247	4
							12.5	14.2	1.7	D-28781	0.192	0.26	166.5	5.99
							14.2	16.5	2.3	D-28782	0.508	0.46	355	16.9
							16.5	18.5	2	D-28783	0.424	0.4	292	13.5
							18.5	20.5	2	D-28784	0.457	0.62	395	212
							20.5	22.5	2	D-28785	0.208	0.42	195.5	11.7 5
							22.5	24.5	2	D-28786	0.147	0.21	88.9	7.03
							24.5	26.5	2	D-28787	0.889	0.95	667	37.4
							26.5	28.5	2	D-28788	0.823	0.72	519	45.5
							28.5	29.3	0.8	D-28789	0.589	0.6	374	37.9
							29.3	31.3	2	D-28790	0.47	0.41	353	34.3
							31.3	32.9	1.6	D-28791	0.606	0.46	434	467

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							32.9	34.55	1.65	D-28792	0.403	0.46	374	52.7
							34.55	35.1	0.55	D-28794	0.481	0.61	140	215
							35.1	37.1	2	D-28795	0.648	0.35	380	42.5
							37.1	39.1	2	D-28796	0.36	0.42	294	21.3
							39.1	41.1	2	D-28798	2.32	1.02	1070	62.9
							41.1	43.1	2	D-28799	0.35	0.33	256	29.3
							43.1	45.1	2	D-28800	0.273	0.34	195.5	24.5
							45.1	47.1	2	D-28801	0.177	0.29	149.5	18.8 5
							47.1	49.1	2	D-28803	0.575	0.57	455	105
							49.1	51.1	2	D-28804	0.401	0.7	419	125
							51.1	53.1	2	D-28805	0.673	0.8	562	74
							53.1	54.6	1.5	D-28806	0.402	0.57	334	23.6
							54.6	55.2	0.6	D-28807	0.638	0.82	471	36.9
							55.2	57	1.8	D-28808	0.253	0.64	219	26.4
							57	58.8	1.8	D-28809	0.267	0.66	335	53.9
							58.8	60.7	1.9	D-28810	0.608	0.88	448	48.1
							60.7	61.75	1.05	D-28811	0.266	0.52	146.5	13.7 5
							61.75	62.85	1.1	D-28812	0.355	0.68	417	35.3
							62.85	64	1.15	D-28813	0.374	0.61	403	15.8 5
							64	64.7	0.7	D-28814	0.561	0.95	586	99.7
							64.7	66.7	2	D-28816	0.446	0.63	385	46.9
							66.7	68.7	2	D-28817	0.261	0.45	235	13.2 5
							68.7	70	1.3	D-28818	0.311	0.39	144.5	10.1
							70	72	2	D-28819	0.25	0.56	235	22.5
							72	74	2	D-28821	0.324	0.57	274	23.5
	1						74	76	2	D-28822	0.376	0.67	267	35
							76	78	2	D-28823	0.278	0.35	280	141. 5
							78	80	2	D-28825	0.165	0.46	156	13.6
				1			80	81.4	1.4	D-28826	0.318	0.38	234	34.4

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							81.4	82.8	1.4	D-28827	0.18	0.32	129.5	20.1
							82.8	84.3	1.5	D-28828	0.343	0.49	304	40.2
							84.3	84.8	0.5	D-28829	0.719	0.71	306	10.6 5
							84.8	85.9	1.1	D-28830	0.349	0.43	273	14.5
							85.9	87	1.1	D-28831	0.268	0.36	214	19.8
							87	89	2	D-28832	0.408	0.72	350	26.9
							89	91	2	D-28834	0.506	0.69	370	65.5
							91	93	2	D-28835	0.679	0.96	389	26.3
							93	95	2	D-28836	0.831	0.9	450	123. 5
							95	97	2	D-28838	1.08	1.07	661	66.8
							97	99	2	D-28839	0.431	0.8	214	20.7
							99	101	2	D-28840	0.256	0.4	115	12.6
							101	103	2	D-28842	0.394	0.52	231	19.9
							103	105	2	D-28843	0.148	0.27	156	12.9 5
							105	106.5	1.5	D-28844	0.342	0.56	227	85.2
							106.5	108.5	2	D-28845	0.685	0.63	498	18.6
							108.5	110.5	2	D-28846	0.703	0.61	872	51.8
							110.5	112.5	2	D-28847	0.718	0.74	633	42.7
							112.5	114.5	2	D-28848	0.952	0.65	649	48.7
							114.5	116.5	2	D-28849	0.412	0.46	259	42.4
							116.5	118.5	2	D-28850	0.945	1.57	1030	146. 5
							118.5	120.5	2	D-28852	0.611	0.98	497	24.3
							120.5	122.5 5	2.05	D-28853	0.299	0.66	224	28.9
							122.5 5	124.6	2.05	D-28854	0.171	0.35	280	19.9 5
							124.6	126.6	2	D-28856	0.26	0.37	271	19.7
							126.6	128.6	2	D-28857	0.332	0.36	369	60.3
							128.6	130.6	2	D-28858	0.471	0.48	560	139. 5
							130.6	132.6	2	D-28860	0.519	0.49	633	105

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							132.6	134.6	2	D-28861	0.569	0.51	678	140. 5
							134.6	136.5	1.9	D-28862	0.408	0.33	527	114. 5
							136.5	138.5	2	D-28863	0.404	0.38	389	29.9
							138.5	140.5	2	D-28864	0.393	0.35	444	74.8
							140.5	142	1.5	D-28865	1.17	0.73	521	58
							142	143.5	1.5	D-28866	0.591	0.3	724	1540
							143.5	145	1.5	D-28868	0.577	0.34	577	984
							145	147	2	D-28869	0.271	0.41	398	44.4
							147	148.7	1.7	D-28870	0.382	0.25	451	53.4
							148.7	150.7	2	D-28871	0.278	0.29	377	155
							150.7	152.7	2	D-28873	0.589	0.56	831	177. 5
							152.7	153.9	1.2	D-28874	0.54	0.53	520	173
							153.9	155.1	1.2	D-28875	0.726	0.66	1230	252
							155.1	157.1	2	D-28876	0.509	0.35	766	89.2
							157.1	159.1	2	D-28877	0.657	0.36	859	64
							159.1	161.1	2	D-28878	0.465	0.42	683	76.4
							161.1	163.1	2	D-28879	0.497	0.56	891	97.7
							163.1	165.1	2	D-28880	0.452	0.64	734	52.5
							165.1	167.1	2	D-28881	0.37	0.47	586	56.5
							167.1	169.1	2	D-28882	0.292	0.44	440	103
							169.1	171.1	2	D-28883	0.49	0.56	678	275
							171.1	173.1	2	D-28884	0.998	1.19	1190	211
							173.1	174.7 5	1.65	D-28886	0.676	0.87	814	76.8
							174.7 5	176.7	1.95	D-28887	0.502	0.92	586	67.5
							176.7	178.7	2	D-28888	0.715	1.04	874	92.1
							178.7	180.7	2	D-28889	0.893	1.67	887	80.9
							180.7	182.2	1.5	D-28891	0.87	1.43	880	149. 5
							182.2	183.7	1.5	D-28892	0.452	0.6	644	58.4
	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
---------	-------------	--------------	-----	-----------------	-----------------	---------------	------------	------------	--------------	--------------	-------	------	------	-----------
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							183.7	185.7	2	D-28893	0.573	0.97	715	53.3
							185.7	187.7	2	D-28894	0.573	0.92	739	92.2
							187.7	189.7	2	D-28895	0.35	0.55	531	42.2
							189.7	191.7	2	D-28896	0.439	0.6	662	48.6
							191.7	193.7	2	D-28898	0.829	0.92	1200	125. 5
							193.7	195.2	1.5	D-28899	0.41	0.76	667	61.2
							195.2	196.6 5	1.45	D-28900	0.87	0.74	802	90.9
							196.6 5	197.9	1.25	D-28901	0.429	0.71	446	85.9
							197.9	199.1	1.2	D-28902	1.05	1	1020	119
							199.1	201.1	2	D-28904	1.26	0.76	1240	317
							201.1	203.1	2	D-28905	1.14	0.84	1240	201
							203.1	204.8 5	1.75	D-28906	1.195	1.07	1220	304
							204.8 5	206.7	1.85	D-28907	0.451	0.51	571	89.9
							206.7	207.7	1	D-28908	0.346	0.59	482	58.2
							207.7	209.7	2	D-28909	0.426	0.39	528	71.1
							209.7	211.7	2	D-28910	0.552	0.7	773	102
							211.7	213.7	2	D-28912	0.603	0.71	822	92.7
							213.7	215.6	1.9	D-28913	0.85	0.92	1020	142
							215.6	217.6	2	D-28914	0.48	0.91	661	70.2
							217.6	219.6	2	D-28915	0.504	0.92	811	84.1
							219.6	221.6	2	D-28916	0.384	1.1	1130	95.3
							221.6	223.6	2	D-28918	0.511	1.17	741	112
							223.6	225.6	2	D-28919	0.505	1.21	884	118. 5
							225.6	227.7	2.1	D-28920	0.483	0.83	824	100. 5
							227.7	229.1	1.4	D-28921	0.516	1.18	808	147. 5
							229.1	230.5	1.4	D-28922	0.442	1.33	900	122
							230.5	231.9	1.4	D-28923	0.349	1.02	706	98.1

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							231.9	233.5	1.6	D-28924	0.631	1.17	864	117. 5
							233.5	235.1	1.6	D-28925	0.355	0.77	661	69.4
							235.1	237.1	2	D-28926	0.182	0.5	242	34.6
							237.1	239.1	2	D-28928	0.138	0.35	17.2	8.28
							239.1	241.1	2	D-28929	0.527	1	58.2	4.34
							241.1	243.1	2	D-28930	0.081	0.18	18.2	1.15
							243.1	245.1	2	D-28932	0.27	0.36	28.5	2.78
							245.1	247.1	2	D-28933	0.7	0.82	151.5	23.1
							247.1	249.1	2	D-28934	0.476	0.79	207	18.7 5
							249.1	251.1	2	D-28936	0.308	0.59	158.5	14.0 5
							251.1	253.1	2	D-28937	0.411	1.01	636	37.3
							253.1	255.1	2	D-28938	0.648	1.05	731	102. 5
							255.1	256.9 5	1.85	D-28939	0.898	1.18	629	119. 5
							256.9 5	258.9	1.95	D-28940	0.306	0.84	468	63.6
							258.9	260.9	2	D-28941	0.334	1.01	498	147. 5
							260.9	262.2	1.3	D-28942	0.243	0.63	374	64.2
							262.2	263.5	1.3	D-28943	0.46	1.42	694	51.8
							263.5	264.2	0.7	D-28944	0.35	0.78	467	66
							264.2	266.2	2	D-28945	0.041	0.3	32.8	1.92
							266.2	268.2	2	D-28946	0.088	0.32	47.4	4.48
							268.2	270.2	2	D-28948	0.123	0.42	45.7	6.32
							270.2	272.2	2	D-28949	0.163	0.22	65.2	10.9
							272.2	274.2	2	D-28950	0.164	0.46	99.2	31.4
							274.2	276.2	2	D-28952	0.2	0.74	105.5	21.9
							276.2	278.2	2	D-28953	0.193	0.39	158	24.1
							278.2	280.2	2	D-28955	0.186	0.46	158.5	9.14
							280.2	282.2	2	D-28956	0.038	0.17	39.5	6.48
							282.2	284.2	2	D-28957	0.01	0.05	8.7	4.34

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							284.2	286.2	2	D-28958	0.067	0.37	53.7	5.56
							286.2	288.2	2	D-28959	0.173	0.36	126.5	6
							288.2	290.2	2	D-28960	0.142	0.45	146	5.76
							290.2	292.2	2	D-28961	0.142	0.45	71.7	6.9
							292.2	294.2	2	D-28962	0.119	0.53	62.2	2.59
							294.2	296.0 5	1.85	D-28963	0.142	0.46	184	7.16
							296.0 5	297.4 5	1.4	D-28964	0.561	0.67	695	32.6
							297.4 5	299.3	1.85	D-28966	1.24	1.08	1420	97.1
							299.3	301.3	2	D-28967	0.625	0.73	732	60.5
							301.3	303.3	2	D-28968	0.294	0.42	337	45
							303.3	305.3	2	D-28969	0.466	0.67	413	34
							305.3	307.3	2	D-28970	0.271	0.52	114	6.62
							307.3	309.3	2	D-28971	0.107	0.13	54.5	3.73
							309.3	311.3	2	D-28973	0.318	0.17	123	3.44
							311.3	313.2	1.9	D-28974	0.201	0.1	65.6	2.47
							313.2	315.2	2	D-28975	0.204	0.11	92	2.89
							315.2	317.2	2	D-28976	0.168	0.09	71.9	2.73
							317.2	319.2	2	D-28977	0.631	0.19	207	7.93
							319.2	321.2	2	D-28978	0.192	0.09	73.3	3.67
							321.2	323.2	2	D-28979	0.192	0.17	85.3	6.17
							323.2	325.2	2	D-28980	0.165	0.12	74.4	3.68
							325.2	327.2	2	D-28981	0.24	0.13	120	8.42
							327.2	329.2	2	D-28982	0.424	0.21	127.5	9.18
							329.2	331.2	2	D-28983	0.312	0.17	184.5	9.05
							331.2	333.2	2	D-28984	0.399	0.16	170.5	8.18
							333.2	335.2	2	D-28985	0.187	0.15	103.5	6.56
							335.2	337.2	2	D-28986	3.47	0.61	438	10.1 5
							337.2	339.2	2	D-28988	0.992	0.23	323	19.2
							339.2	341.2	2	D-28989	0.98	0.34	418	12.6 5

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							341.2	343.2	2	D-28991	0.6	0.3	283	12.8
							343.2	345.2	2	D-28992	0.255	0.17	133.5	5.95
							345.2	347.2	2	D-28993	0.076	0.11	57	4.57
							347.2	349.2	2	D-28994	0.098	0.26	69.8	6.87
							349.2	351.2	2	D-28995	0.148	0.36	93.9	6.36
							351.2	353.2	2	D-28996	0.185	1.05	195	6.02
							353.2	355.2	2	D-28998	0.131	0.64	127	11.8
							355.2	356.8	1.6	D-28999	0.463	0.42	312	16.7
							356.8	358.0 5	1.25	D-27001	0.57	1.06	550	24.7
							358.0 5	360	1.95	D-27002	0.126	0.93	124	8.85
							360	362	2	D-27003	0.083	0.17	60.3	4.21
							362	364	2	D-27005	0.11	0.57	85.3	8.18
							364	366	2	D-27006	0.119	0.48	100.5	11.4 5
							366	368	2	D-27007	0.096	0.21	83.9	10
							368	370	2	D-27008	0.091	0.2	77.1	17.9
							370	372	2	D-27009	0.22	0.77	135	15.0 5
							372	373.4	1.4	D-27010	0.099	0.25	71.5	9.07
							373.4	374.8	1.4	D-27011	0.073	0.12	65.6	5.87
							374.8	376.1 5	1.35	D-27012	0.066	0.1	71.2	5.58
							376.1 5	377.9 5	1.8	D-27013	0.114	1.45	78	12
							377.9 5	379.7 5	1.8	D-27014	0.171	2.4	155	24.5
							379.7 5	381.5 5	1.8	D-27015	0.156	0.24	112.5	14.8 5
							381.5 5	383.5 5	2	D-27016	0.282	0.4	122.5	13.3
							383.5 5	385.5 5	2	D-27017	0.08	0.11	46.2	2.33
							385.5 5	387.5 5	2	D-27019	0.106	0.11	46.4	5.25
							387.5	389.5	2	D-27020	0.398	0.21	46.7	4.07

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	_	Au	Ag	Cu	Мо
							5	5						
							389.5 5	391.5 5	2	D-27021	0.289	0.18	94.8	6.36
							391.5 5	393.5 5	2	D-27022	0.184	0.23	43.3	3.23
							393.5 5	394.9 5	1.4	D-27023	0.071	0.17	1850	5.43
							394.9 5	396.3 5	1.4	D-27025	0.13	0.61	102	15.1
							396.3 5	398.3	1.95	D-27026	0.129	1.32	63.6	9.93
							398.3	400.3	2	D-27027	0.11	0.14	45.5	3.26
							400.3	402.3	2	D-27028	0.062	0.14	39.1	2.15
							402.3	404.3	2	D-27029	0.13	0.25	105	8.88
							404.3	406.3	2	D-27030	0.044	0.16	42.1	2.41
							406.3	408.3	2	D-27031	0.072	0.37	63.1	4.09
							408.3	410.3	2	D-27032	0.092	0.37	93.9	27.6
							410.3	412.3	2	D-27033	0.015	0.12	26.4	0.45
							412.3	414.3	2	D-27035	0.019	0.17	42	1.01
							414.3	416.3	2	D-27036	0.103	0.54	68.4	1.37
							416.3	418.3	2	D-27037	0.023	0.13	27.1	1
							418.3	419.5	1.2	D-27038	0.028	0.12	16.5	0.92
							419.5	421.5	2	D-27039	0.115	0.29	37.9	3.87
							421.5	423.5	2	D-27041	0.114	0.17	66	4.15
							423.5	425.5	2	D-27042	0.127	0.54	101.5	9.04
							425.5	427.5	2	D-27043	0.258	0.43	192	2.72
							427.5	429.5	2	D-27044	0.081	0.17	35.9	4.24
							429.5	431.5	2	D-27046	0.129	0.4	255	9.32
							431.5	433.4	1.9	D-27047	0.259	1.54	60.7	4.41
							433.4	434.8 5	1.45	D-27048	0.026	0.24	30	0.6
							434.8 5	436.3	1.45	D-27049	0.052	0.86	15.5	0.87
							436.3	437.7	1.4	D-27050	0.013	0.25	16.8	0.38
							437.7	439.2	1.5	D-27051	0.038	0.28	20.9	0.8

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							439.2	440.5	1.3	D-27052	0.053	0.56	31.8	0.9
TS_DH_0 4	423840	584369	121 0	321	-70	400	0	3	3	D-28001	0.135	0.14 1	191	7.44
							3	6	3	D-28002	1.115	0.41 9	518	14.7 5
							6	8.8	2.8	D-28003	0.771	0.47	657	6.28
							8.8	10.8	2	D-28004	1.28	0.44 6	770	6.75
							10.8	12.8	2	D-28005	0.557	0.41 9	569	2.63
							12.8	14.8	2	D-28006	0.91	1.57	605	4.35
							14.8	16.8	2	D-28007	0.935	1.34	884	15.9 5
							16.8	18.8	2	D-28008	0.932	1.01	843	35
							18.8	20.8	2	D-28009	2.14	1.59	1395	51.3
							20.8	22.8	2	D-28010	0.746	1.13	695	45.1
							22.8	24.8	2	D-28012	1.005	1.18 5	937	54.1
							24.8	26.8	2	D-28013	0.386	0.65 3	494	27.3
							26.8	28.8	2	D-28014	0.383	0.48 6	433	42.1
							28.8	30.8	2	D-28015	0.848	0.97 5	642	35.6
							30.8	32.8	2	D-28017	0.538	0.55 8	556	38
							32.8	34.8	2	D-28018	1.015	0.69 3	711	48.8
							34.8	36.8	2	D-28019	1.1	1	806	49.7
							36.8	38.8	2	D-28020	0.744	0.86 3	647	93
							38.8	40.8	2	D-28022	0.632	0.75 3	568	21.1
							40.8	42.8	2	D-28023	1.54	1.29 5	981	47.8
							42.8	44.8	2	D-28024	1.965	0.94	1160	44.5
							44.8	46.8	2	D-28025	1.485	1.05 5	1025	49.1

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							46.8	48.8	2	D-28026	2.11	1.72 5	1325	89
							48.8	50.8	2	D-28027	1.125	0.95 3	841	101. 5
							50.8	52.8	2	D-28028	0.745	0.66 7	690	47.1
							52.8	54.8	2	D-28029	0.365	0.68 6	604	21.9
							54.8	56.8	2	D-28030	0.641	0.82 2	588	75.3
							56.8	58.8	2	D-28032	0.661	0.83	607	75.2
							58.8	60.8	2	D-28033	0.97	0.64 6	773	40.4
							60.8	62.8	2	D-28034	0.46	0.47	420	43.4
							62.8	64.8	2	D-28035	0.7	0.72 6	667	182
							64.8	66.8	2	D-28037	0.785	0.96 7	761	39.7
							66.8	68.8	2	D-28038	0.629	0.83 6	550	108
							68.8	70.8	2	D-28039	0.408	0.60 7	403	27.8
							70.8	72.8	2	D-28040	0.507	1.84 5	547	27.9
							72.8	74.8	2	D-28042	0.68	1.15 5	626	41.4
							74.8	76.8	2	D-28043	1.25	1.46	1235	81.1
							76.8	78.8	2	D-28044	0.847	1.26	800	93.1
							78.8	80.8	2	D-28045	0.7	0.85 3	611	57.1
			1				80.8	82.8	2	D-28046	0.71	0.96 6	682	203
							82.8	84.8	2	D-28047	0.819	0.95	613	26.3
							84.8	86.8	2	D-28048	0.44	0.73	448	36.7
							86.8	88.8	2	D-28049	0.926	1.07	968	64.6
	1						88.8	90.8	2	D-28050	0.708	1.59	1725	65.8

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							90.8	92.8	2	D-28052	1.05	1.61 5	1535	104
							92.8	94.8	2	D-28053	0.901	1.59 5	1335	105. 5
							94.8	96.8	2	D-28054	1.515	2.3	1815	154. 5
							96.8	98.8	2	D-28055	0.876	2.15	949	41.8
							98.8	100.8	2	D-28057	0.731	1.62	1240	28.1
							100.8	102.8	2	D-28058	0.773	1.02	1150	74.6
							102.8	104.8	2	D-28059	0.685	0.90 7	862	58.1
							104.8	106.8	2	D-28060	0.677	0.97 5	537	81.3
							106.8	108.8	2	D-28062	0.563	0.82 9	478	29.5
							108.8	110.8	2	D-28063	0.055	0.21 8	76	1.39
							110.8	112.8	2	D-28064	0.71	0.38 1	322	5.15
							112.8	114.8	2	D-28065	0.763	0.71 7	426	7.3
							114.8	116.8	2	D-28066	0.704	0.44 5	352	6.44
							116.8	118.8	2	D-28067	0.23	0.27 5	129	3.13
							118.8	120.8	2	D-28068	0.415	0.39 8	323	5.76
							120.8	122.8	2	D-28069	0.13	0.27 3	169	4.65
							122.8	124.8	2	D-28070	0.549	0.41 3	425	12.0 5
							124.8	126.8	2	D-28072	0.195	0.35 9	381	8.05
							126.8	128.8	2	D-28073	0.555	0.73 3	517	9.69
				1			128.8	130.8	2	D-28074	0.928	1.19	778	26.9
							130.8	132.8	2	D-28075	0.592	0.78 7	520	10.5
							132.8	134.8	2	D-28077	0.141	0.63	128.5	3.67

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							134.8	136.8	2	D-28078	0.75	1.15	605	11.7
							136.8	138.8	2	D-28079	1.07	2.05	811	19.1 5
							138.8	140.8	2	D-28080	0.558	1.17	458	8.69
							140.8	142.8	2	D-28082	0.487	0.61 9	274	5
							142.8	144.8	2	D-28083	0.22	0.23 6	160.5	4.69
							144.8	146.8	2	D-28084	0.263	0.30 8	216	4.95
							146.8	148.8	2	D-28085	0.267	0.49	216	6.23
							148.8	150.8	2	D-28086	0.191	0.51	256	6.49
							150.8	152.8	2	D-28087	0.116	0.44 5	203	4.55
							152.8	154.8	2	D-28088	0.121	0.36 6	198.5	4.61
							154.8	156.8	2	D-28089	0.259	0.59 6	284	8.02
							156.8	158.8	2	D-28090	0.27	0.72	428	6.34
							158.8	160.8	2	D-28092	0.323	0.72 2	456	9.19
							160.8	162.8	2	D-28093	0.384	0.55 8	409	7.1
							162.8	164.8	2	D-28094	0.607	0.82 9	542	8.53
							164.8	166.8	2	D-28095	0.473	0.45 9	365	5.75
							166.8	168.8	2	D-28097	0.727	0.62 9	392	6.71
							168.8	170.8	2	D-28098	1.095	0.61 8	463	6.99
							170.8	172.8	2	D-28099	0.289	0.64 8	441	10.1 5
							172.8	174.8	2	D-28100	0.389	0.72	565	15
							174.8	176.8	2	D-28102	0.376	0.97 8	536	9.72
							176.8	178.8	2	D-28103	0.234	3.84	428	9.93
							178.8	180.8	2	D-28104	0.421	1.20 5	647	11.7

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							180.8	182.8	2	D-28105	0.419	1.31 5	768	11.2 5
							182.8	184.8	2	D-28106	0.086	0.20 2	114.5	0.49
							184.8	186.8	2	D-28107	0.085	0.22 8	98.8	2.22
							186.8	188.8	2	D-28108	0.075	0.18 2	94.5	2.77
							188.8	190.8	2	D-28109	0.11	0.22 2	58.2	0.91
							190.8	192.8	2	D-28110	0.11	0.20 2	100	0.88
							192.8	194.8	2	D-28112	0.137	0.16	64.4	0.5
							194.8	196.8	2	D-28113	0.187	0.28	153	1.14
							196.8	198.8	2	D-28114	0.141	0.20 7	115.5	0.66
							198.8	200.8	2	D-28115	0.082	0.17 7	92.5	0.36
							200.8	202.8	2	D-28117	0.062	0.12 8	63.9	0.56
							202.8	204.6 2	1.82	D-28118	0.018	0.06	7.36	1.96
							204.6 2	206	1.38	D-28119	0.029	0.05 3	13.25	3.34
							206	207.1	1.1	D-28120	0.015	0.13	15.75	1.98
							207.1	209.5	2.4	D-28122	0.002 5	0.09	8.53	1.77
							209.5	211	1.5	D-28123	0.042	0.32	15.45	3.92
							211	211.7 4	0.74	D-28124	0.002	0.23 4	8.7	0.91
							211.7 4	215	3.26	D-28125	0.01	0.17 4	14.75	2.21
							215	217.0 5	2.05	D-28126	0.035	0.16 6	8.36	1.82
							217.0 5	219.0 5	2	D-28128	0.002 5	0.11	8.46	1.12
							219.0 5	221.0 5	2	D-28129	0.002	0.09	9.21	1.32

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							221.0 5	223	1.95	D-28130	0.006	0.38 4	10	1.1
							223	224.9	1.9	D-28132	0.002 5	0.19	8.88	1.16
							224.9	226.7	1.8	D-28133	0.006	0.29	9.27	0.75
							226.7	228.7	2	D-28134	0.002 5	0.46 3	8.82	1.43
							228.7	230.4	1.7	D-28135	0.002 5	0.35 7	8.01	2.71
							230.4	232.2	1.8	D-28137	0.002 5	0.38 3	8.34	0.41
							232.2	234.2	2	D-28138	0.002 5	0.23 4	7.71	0.38
							234.2	235.9	1.7	D-28139	0.025	0.33 4	7.49	0.51
							235.9	238	2.1	D-28140	0.002 5	0.18 3	7.59	0.45
							238	240	2	D-28142	0.005	0.27	7.9	0.2
							240	242	2	D-28143	0.006	0.29 2	7.33	0.16
							242	244	2	D-28144	0.002 5	0.25	7.38	0.21
							244	246	2	D-28145	0.005	0.22 4	7.52	0.19
							246	248	2	D-28146	0.002 5	0.22 6	7.73	0.16
							248	250	2	D-28147	0.002 5	0.17 9	7.46	0.15
							250	252	2	D-28148	0.119	2.83	7.27	0.82
							252	254	2	D-28149	0.238	3.27	7.36	4.65
							254	255.8	1.8	D-28150	0.048	0.59 9	7.23	1.13
							255.8	257.7	1.9	D-28152	0.32	5.76	7.56	1.52
							257.7	259.6	1.9	D-28153	0.252	3.73	7.29	0.48
							259.6	261.6	2	D-28154	0.002 5	0.08 7	8.32	1.1
							261.6	263.5	1.9	D-28155	0.002 5	0.11 7	8.27	1.18

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							263.5	265.5	2	D-28157	0.002 5	0.09 3	8.43	1.24
							265.5	267.6	2.1	D-28158	0.002 5	0.06 4	8.24	1.04
							267.6	269.6	2	D-28159	0.002 5	0.13 2	8.35	1.14
							269.6	271.6	2	D-28160	0.002 5	0.07 9	8.43	1.06
							271.6	273.6	2	D-28162	0.002 5	0.11 7	8.12	1.06
							273.6	275.6	2	D-28163	0.006	0.12 2	8.04	1.05
							275.6	277.6	2	D-28164	0.002 5	0.10 5	7.99	1.04
							277.6	279.6	2	D-28165	0.002 5	0.06 9	8.4	1.1
							279.6	281.6	2	D-28166	0.002 5	0.08 4	8.36	1.34
							281.6	283.6	2	D-28167	0.002 5	0.07 3	8.2	1.2
							283.6	285.8	2.2	D-28168	0.002 5	0.09 2	8.1	1.28
							285.8	287.8	2	D-28169	0.009	0.45 8	7.31	1.34
							287.8	289.7	1.9	D-28170	0.002 5	0.69 7	7.39	0.55
							289.7	291.7	2	D-28172	0.002 5	0.52	7.37	0.34
							291.7	293.7	2	D-28173	0.002 5	0.09 7	8.4	1.18
							293.7	295.7	2	D-28174	0.002 5	0.07 8	8.41	1.46
							295.7	297.7	2	D-28175	0.008	0.34 8	7.26	0.51
							297.7	299.6	1.9	D-28177	0.002 5	0.53	7.07	0.22
							299.6	301.6	2	D-28178	0.002	0.76 8	7.13	0.27
							301.6	303.3	1.7	D-28179	0.018	0.48 7	6.68	0.29
							303.3	305.6	2.3	D-28180	0.002	0.32	7.24	0.19

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
											5	7		
							305.6	307.5	1.9	D-28182	0.002	0.29 4	7.36	0.16
							307.5	309.5	2	D-28183	0.002 5	0.38 8	7.53	0.18
							309.5	311.5	2	D-28184	0.002 5	0.34 4	7.34	0.14
							311.5	313.5	2	D-28185	0.002 5	0.33 4	7.45	0.22
							313.5	315.5	2	D-28186	0.002 5	0.29 2	7.28	0.16
							315.5	317.7	2.2	D-28187	0.002 5	0.15 7	7.05	0.21
							317.7	319.7 5	2.05	D-28188	0.009	0.23 1	7.1	0.19
							319.7 5	321.9	2.15	D-28189	0.017	0.28 2	6.81	0.25
							321.9	324.0 3	2.13	D-28190	0.002 5	0.18 7	7.22	0.16
							324.0 3	326.1 4	2.11	D-28192	0.005	0.23 2	7.19	0.18
							326.1 4	328.2	2.06	D-28193	0.002 5	0.28 5	7.29	0.24
							328.2	330.2 8	2.08	D-28194	0.002 5	0.17	7.4	0.17
							330.2 8	332.4 7	2.19	D-28195	0.002 5	0.32 8	7.46	1.19
							332.4 7	334.5	2.03	D-28197	0.002 5	0.22 7	7.31	0.33
							334.5	336.5 5	2.05	D-28198	0.002 5	0.16 6	7.42	0.34
							336.5 5	338.5	1.95	D-28199	0.002 5	0.11 7	7.52	0.3
								340.6 1	2.11	D-28200	0.002 5	0.3	7.56	0.25
							340.6 1	342.6 8	2.07	D-28202	0.022	1.21	7.24	0.2
							342.6 8	344.7 9	2.11	D-28203	0.326	17.9 5	7.11	1.03
							344.7 9	346.8	2.01	D-28204	0.002 5	0.26 6	7.24	0.23

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							346.8	348.9 3	2.13	D-28205	0.002 5	0.39 9	7.4	0.35
							348.9 3	350.9 4	2.01	D-28206	0.002 5	0.23 2	7.48	0.23
TS_DH_0 5	423815	584526	123 5	306	-55	390	1.7	4.67	2.97	D-28208	0.567	0.19 9	385	9.07
							4.67	9.5	4.83	D-28209	0.922	0.21 4	393	34.2
							9.5	8.68	0.82	D-28210	1.24	0.24 4	367	33.3
							8.68	11.2	2.52	D-28211	1.795	0.83 6	713	11.6 5
							11.2	14.3	3.1	D-28212	0.835	0.26 7	1300	15.2
							14.3	16.16	1.86	D-28213	0.744	0.20 4	658	28.8
							16.16	19.9	3.74	D-28214	0.809	0.32	600	10.4
							19.9	24.25	4.35	D-28215	0.41	0.41 8	693	14.8
							24.25	26.85	2.6	D-28216	0.387	0.39 5	453	3.51
							26.85	28.85	2	D-28218	0.836	0.59 4	1005	39.9
							28.85	30.55	1.7	D-28219	0.617	2.26	1455	16
							30.55	33.25	2.7	D-28220	0.362	1.56 5	606	113. 5
							33.25	35.2	1.95	D-28221	0.736	0.91 4	638	102
							35.2	37.05	1.85	D-28223	0.237	0.65 8	368	201
							37.05	39.9	2.85	D-28224	0.102	0.33 8	189	7.36
							39.9	41.95	2.05	D-28225	0.149	0.85	689	12.7
							41.95	44.05	2.1	D-28226	0.172	0.40 2	202	16.4
							44.05	46	1.95	D-28228	0.218	0.37 6	199	37.9
							46	47.6	1.6	D-28229	0.212	0.29 9	246	51.6

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							47.6	49.5	1.9	D-28230	0.26	0.29 2	272	36.5
							49.5	51.3	1.8	D-28231	0.169	0.53 8	294	30
							51.3	53.2	1.9	D-28232	0.303	0.51 6	316	12.5
							53.2	54.76	1.56	D-28233	0.354	0.32	368	42.2
							54.76	56.8	2.04	D-28234	0.923	0.95	1050	59
							56.8	58.66	1.86	D-28235	0.247	0.37 1	378	37.5
							58.66	60.27	1.61	D-28236	0.292	0.35 9	400	73.3
							60.27	63.3	3.03	D-28237	0.362	0.49 5	401	21.1
							63.3	65.74	2.44	D-28239	0.136	0.46 9	323	23.1
							65.74	67.5	1.76	D-28240	0.338	0.42 5	444	50.2
							67.5	69.8	2.3	D-28241	0.185	0.27 2	278	23.7
							69.8	71.35	1.55	D-28243	0.289	0.37	439	28.3
							71.35	73.3	1.95	D-28244	0.37	0.37 3	504	23.8
							73.3	75.25	1.95	D-28245	0.387	0.55 3	681	32
							75.25	77.2	1.95	D-28246	0.321	0.71 3	606	25.4
							77.2	79.1	1.9	D-28248	0.472	0.50	555	78.9
							79.1	81	1.9	D-28249	0.305	0.39	403	49.1
							81	82.9	1.9	D-28250	0.262	0.38	414	42.5
							82.9	84.9	2	D-28251	0.148	0.36 9	259	52.7
							84.9	86.8	1.9	D-28252	0.128	0.38 3	250	126
							86.8	88.8	2	D-28253	0.259	0.30	343	46.6

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							88.8	90.73	1.93	D-28254	0.312	0.44 7	519	35.6
							90.73	92.68	1.95	D-28255	0.229	0.29 6	348	34.9
							92.68	94.5	1.82	D-28256	0.35	0.34	358	18.3
							94.5	96.26	1.76	D-28258	0.629	0.32	393	16.0 5
							96.26	98.36	2.1	D-28259	0.167	0.20 5	211	10.5
							98.36	100.4 7	2.11	D-28260	0.436	0.34 7	367	19.9
							100.4 7	102.4 4	1.97	D-28261	0.294	0.31 7	290	18.6 5
							102.4 4	104.5	2.06	D-28263	0.174	0.19 7	221	12.1
							104.5	106.5 6	2.06	D-28264	0.318	0.48 9	487	25.2
							106.5 6	108.5	1.94	D-28265	0.277	0.75 4	633	23.2
							108.5	110.5 5	2.05	D-28266	0.25	0.54 9	507	152. 5
							110.5 5	112.6	2.05	D-28268	0.354	1.28	1220	492
							112.6	114.6	2	D-28269	0.559	0.85 4	708	178. 5
							114.6	116.6	2	D-28270	0.982	0.99 5	797	48.6
							116.6	118.6 8	2.08	D-28271	0.664	0.59 4	480	30.9
							118.6 8	120.6	1.92	D-28272	0.56	0.74 6	525	48.4
							120.6	122.8	2.2	D-28273	0.524	1.12 5	974	83.5
							122.8	124.7 5	1.95	D-28274	0.312	0.41	383	41
							124.7 5	126.0 2	1.27	D-28275	0.489	0.72	293	27
							126.0 2	128.1	2.08	D-28276	0.711	1.07 5	740	67.8
							128.1	130.1	2	D-28278	0.269	0.75 8	347	65.6

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
				,			130.1	132.1	2	D-28279	0.326	0.67 2	230	14.5 5
							132.1	134.2	2.1	D-28280	0.303	1.60 5	713	100. 5
							134.2	136.3 4	2.14	D-28281	0.287	0.72 2	591	35.5
							136.3 4	138.3 4	2	D-28283	0.411	0.83	570	42.8
							138.3 4	140.3 4	2	D-28284	0.302	1.57	755	121
							140.3 4	142.4 7	2.13	D-28285	0.151	0.85 2	440	23.5
							142.4 7	144.3 5	1.88	D-28286	0.194	3.25	1550	50.1
							144.3 5	146.5	2.15	D-28288	0.264	1.07	925	58.1
							146.5	148.4 5	1.95	D-28289	0.323	0.78 6	888	38.7
							148.4 5	150.4	1.95	D-28290	0.328	0.60 7	563	16
							150.4	152.5	2.1	D-28291	0.211	0.48 8	450	15.6 5
							152.5	154.5 6	2.06	D-28292	0.213	0.43 5	420	17.3
							154.5 6	156.5 5	1.99	D-28293	0.186	0.55 1	418	10.3
							156.5 5	158.6 2	2.07	D-28294	0.327	0.87 7	818	48.2
							158.6 2	160.4 5	1.83	D-28295	0.157	0.70 4	615	522
							160.4 5	162.6	2.15	D-28296	0.156	0.52 8	510	51.7
							162.6	164.7	2.1	D-28298	0.144	0.68 8	660	6.13
							164.7	166.7 2	2.02	D-28299	0.344	0.90 5	815	17.2 5
							166.7 2	168.8	2.08	D-28300	0.114	0.27	196.5	4.19
							168.8	170.9	2.1	D-28301	0.074	0.46 6	259	7.69
							170.9	172.9	2	D-28303	0.07	0.47	219	14.4

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
												3		5
							172.9	175	2.1	D-28304	0.203	0.59 3	358	15.6
							175	177	2	D-28305	0.107	0.47 5	299	198. 5
							177	179	2	D-28306	0.171	0.35 8	280	83.8
							179	181	2	D-28308	0.586	0.98 4	764	48.5
							181	183	2	D-28309	0.585	0.83 6	531	61.5
							183	185.1 5	2.15	D-28310	0.366	0.55 8	354	17
							185.1 5	187.2	2.05	D-28311	0.826	1.07	556	49.5
							187.2	189.3	2.1	D-28312	0.176	0.60 7	331	13
							189.3	191.4 6	2.16	D-28313	0.267	0.70 9	427	5.61
							191.4 6	193.5	2.04	D-28314	0.243	1.06 5	416	11.2 5
							193.5	195.5	2	D-28315	0.085	0.41 5	188.5	3.35
							195.5	197.5 5	2.05	D-28316	0.168	0.89 9	390	3.6
							197.5 5	199.7	2.15	D-28318	0.275	1.10 5	407	12.0 5
							199.7	202.1 3	2.43	D-28319	0.238	0.73 9	174.5	32.4
							202.1 3	204.2	2.07	D-28320	0.56	1.19	392	10.8 5
							204.2	205.6	1.4	D-28321	0.451	0.85 4	452	11.3
							205.6	207.6 7	2.07	D-28323	0.196	0.79	379	47.4
							207.6 7	209.6	1.93	D-28324	0.262	0.78 4	458	12.6 5
			1				209.6	211.8	2.2	D-28325	0.361	1.12	565	12.3
							211.8	213.7 4	1.94	D-28326	0.701	4.71	1790	22.7

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
				,			213.7 4	215.7 5	2.01	D-28328	0.799	2.96	998	64.9
							215.7 5	217.7 5	2	D-28329	0.616	2.58	604	18.8
							217.7 5	219.7 5	2	D-28330	0.232	0.48 7	275	13.1 5
							219.7 5	221.7 5	2	D-28331	0.103	0.39 5	251	27.5
							221.7 5	223.7 5	2	D-28332	0.103	0.29 8	196.5	6.74
							223.7 5	225.8 5	2.1	D-28333	0.123	0.32 6	186	5.24
							225.8 5	227.7	1.85	D-28334	0.207	0.55 8	482	13.9
							227.7	229.7 5	2.05	D-28335	0.15	0.31 5	289	12.5 5
							229.7 5	231.7	1.95	D-28336	0.119	0.3	88.8	24.9
							231.7	233.5 5	1.85	D-28338	0.224	0.82	537	56.1
							233.5 5	235.6	2.05	D-28339	0.114	0.33 3	263	7.17
							235.6	237.6 3	2.03	D-28340	0.182	0.64 5	251	57.3
							237.6 3	239.5 5	1.92	D-28341	0.263	0.82 1	229	5.97
							239.5 5	241.5 5	2	D-28343	0.157	0.31 8	152	8.87
							241.5 5	243.6 5	2.1	D-28344	0.12	0.3	141.5	14.6 5
							243.6 5	245.7 5	2.1	D-28345	0.156	0.39 5	211	9.1
							245.7 5	247.7 8	2.03	D-28346	0.198	0.43 4	201	7.45
							247.7 8	249.8	2.02	D-28348	0.26	0.60 2	345	7.73
							249.8	251.8	2	D-28349	0.261	1	606	12.4 5
							251.8	253.8 5	2.05	D-28350	0.278	0.99 9	444	6.51
							253.8	255.8	2.03	D-28351	0.236	0.95	415	13

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							5	8				9		
							255.8 8	258	2.12	D-28352	0.118	0.63 1	271	9.24
							258	259.9 5	1.95	D-28353	0.183	0.79 1	292	10.2
							259.9 5	262.1	2.15	D-28354	0.426	0.76 1	282	18.2 5
							262.1	264.1 5	2.05	D-28355	0.765	1.62 5	501	34.2
							264.1 5	266.1 5	2	D-28356	0.184	0.53 3	282	32.1
							266.1 5	268.2	2.05	D-28358	0.218	0.85	436	8.07
							268.2	270.2 5	2.05	D-28359	0.64	1.04	549	23.3
							270.2 5	272.5	2.25	D-28360	0.48	1.15 5	425	15.7 5
							272.5	274.6	2.1	D-28361	0.524	0.83	310	31.8
							274.6	276.6 5	2.05	D-28363	0.276	0.59	331	16.5 5
							276.6 5	278.7 5	2.1	D-28364	0.356	0.88 8	427	19.7 5
							278.7 5	280.7 5	2	D-28365	0.673	1.04	614	34
							280.7 5	283.1	2.35	D-28366	0.365	0.80	403	40.5
							355.6	285	1.9	D-28368	0.96	1.24 5	734	48.7
							285	287.1 2	2.12	D-28369	0.664	1.02	638	39.4
							287.1 2	289.3	2.18	D-28370	1.35	0.78 6	641	20.2
							289.3	291.3	2	D-28371	0.97	0.74 4	810	23.1
							291.3	293.4	2.1	D-28372	0.643	0.56 5	424	22.4
							293.4	295.4 5	2.05	D-28373	0.691	0.47 9	419	38
							295.4 5	297.6 5	2.2	D-28374	0.685	0.63 9	409	71.8

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							297.6 5	299.8	2.15	D-28375	0.618	0.66 7	295	18.1 5
							299.8	301.8 5	2.05	D-28376	0.367	0.99 6	314	19.1 5
							301.8 5	304	2.15	D-28378	0.228	0.82 8	252	10.7 5
							304	306.1 8	2.18	D-28379	0.368	0.68 8	314	10.7
							306.1 8	308.2 2	2.04	D-28380	0.429	0.39 4	250	24.1
							308.2 2	310.3 5	2.13	D-28381	0.886	0.43 2	310	18.1
							310.3 5	312.3 5	2	D-28383	0.554	0.37 7	324	19.9
							312.3 5	316.8 5	4.5	D-28384	0.521	0.39 1	280	20.8
							316.8 5	319	2.15	D-28385	0.969	0.42 5	277	56.4
							319	321.1	2.1	D-28386	3.03	1.14	1050	61.5
							321.1	323.1 5	2.05	D-28388	0.194	0.28 7	243	17.1 5
							323.1 5	325.1 8	2.03	D-28389	0.291	0.49 6	199	13.5 5
							325.1 8	327.2 3	2.05	D-28390	0.196	0.53 4	187	20.8
							327.2 3	329.1	1.87	D-28391	0.245	0.61	140	14.9
							329.1	331.5	2.4	D-28392	0.241	0.2	110	12.5 5
							331.5	333.7 5	2.25	D-28393	0.486	0.68	153.5	21.6
							333.7 5	335.7 5	2	D-28394	0.493	0.36	175	20.3
							335.7 5	337.9	2.15	D-28395	0.156	0.23 4	89.9	8.32
							337.9	340	2.1	D-28396	0.136	0.20 9	61.9	6.64
							340	342.2	2.2	D-28398	0.183	0.35 9	87.8	10
							342.2	344.2	2	D-28399	0.057	0.21 3	34.3	2.1

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							344.2	346.2	2	D-28400	0.082	0.24 6	57.8	3.96
							346.2	348	1.8	D-28401	0.066	0.18 4	30	1.38
							348	349.6 5	1.65	D-28403	0.217	0.49 9	161	22.7
							349.6 5	351.7	2.05	D-28404	0.121	0.35 3	100.5	3.5
							351.7	353.5	1.8	D-28405	0.049	0.16 4	31.9	2.94
							353.5	355.6	2.1	D-28406	0.054	0.17	21.9	1.41
TS_DH_0 6	423740	584706	127 5	306	-55	350	0	2	2	D-27082	0.063	0.25 4	61.5	2.02
							2	4	2	D-27083	0.616	0.38 6	458	1.33
							4	6	2	D-27084	0.328	0.30 4	393	1.04
							6	8	2	D-27085	0.421	0.35 6	338	0.88
							8	10	2	D-27086	0.518	0.47 7	343	2.35
							10	12	2	D-27087	0.114	0.41 7	312	4.03
							12	14	2	D-27088	0.213	0.38	430	2.27
							14	16	2	D-27089	0.207	0.80 5	313	3.98
							16	18	2	D-27090	0.246	0.42 8	326	1.72
							18	20	2	D-27091	0.232	0.59 4	289	2.65
							20	22	2	D-27093	0.109	0.50 5	196	3.96
							22	24	2	D-27094	0.168	0.89 9	221	15.6
							24	26	2	D-27095	0.063	0.25 6	94	4.64
							26	28	2	D-27096	0.228	0.40 7	282	11.5
							28	30	2	D-27098	0.139	0.28 5	168	14.2

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							30	32	2	D-27099	0.363	0.38 6	436	23.5
							32	34	2	D-27100	0.086	0.27 1	106	6.89
							34	36	2	D-27101	0.109	0.20 2	96	7.28
							36	38	2	D-27103	0.129	0.11 3	64.6	8.53
							38	40	2	D-27104	0.122	0.19	153.5	5.07
							40	42	2	D-27105	0.148	0.16 5	129	11.9 5
							42	44	2	D-27106	0.301	0.29	206	8.39
							44	46	2	D-27107	0.093	0.19 8	73.6	6.63
							46	48	2	D-27108	0.136	0.26 1	110.5	8.53
							48	50	2	D-27109	0.149	0.20 5	98.3	4.6
							50	52	2	D-27110	0.276	0.29 9	194	16.7 5
							52	54	2	D-27111	0.263	0.32 2	251	14.7 5
							54	56	2	D-27113	0.381	0.61 3	400	21.7
							56	58	2	D-27114	0.187	0.24 3	155	9.1
							58	60	2	D-27115	0.086	0.17	145	4.84
							60	62	2	D-27116	0.08	0.14 4	80.8	5.33
							62	64	2	D-27118	0.082	0.26	90.9	13.4
							64	66	2	D-27119	0.193	0.39 2	148.5	12.2 5
							66	68	2	D-27120	0.208	0.22	205	12.1
							68	70	2	D-27121	0.177	0.25	170	35.9
							70	72	2	D-27123	0.448	0.46 9	452	42

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							72	74	2	D-27124	0.364	0.55 6	439	33.8
							74	76	2	D-27125	0.199	0.25 8	227	95
							76	78	2	D-27126	0.176	0.52 5	172.5	21.2
							78	80	2	D-27127	1.34	0.95 8	935	48.6
							80	82	2	D-27128	0.66	0.63 3	589	38.7
							82	84	2	D-27129	0.388	0.33	273	15.3
							84	86	2	D-27130	0.735	1.08 5	903	59.7
							86	88	2	D-27131	0.724	1.19	649	61.3
							88	90	2	D-27133	0.759	1.71 5	776	43.6
							90	92	2	D-27134	0.798	1.16 5	861	40.4
							92	94	2	D-27135	0.67	0.69 7	633	31.3
							94	96	2	D-27136	0.829	0.82 8	690	35.2
							96	98	2	D-27138	0.397	1.18	457	25.2
							98	100	2	D-27139	0.391	0.79 2	505	30.9
							100	102	2	D-27140	0.389	0.58 8	564	15.0 5
							102	104	2	D-27141	0.778	0.89	881	5 33
							104	106	2	D-27143	0.343	0.37 1	337	32.3
							106	108	2	D-27144	0.21	0.33 2	286	39.6
							108	110	2	D-27145	0.142	0.30 4	196	11.8
							110	112	2	D-27146	0.296	0.57 3	361	14.6
							112	114	2	D-27147	0.223	0.31 9	290	12.6
							114	116	2	D-27148	0.161	0.56 6	250	14.3

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							116	118	2	D-27149	0.146	0.40 9	205	9.11
							118	120	2	D-27150	0.118	0.34 5	213	11.1
							120	122	2	D-27151	0.142	0.45 7	153	10.3 5
							122	124	2	D-27153	0.25	0.74 2	380	31.9
							124	126	2	D-27154	0.262	0.22 5	135	13.6 5
							126	128	2	D-27155	0.293	0.36 7	290	10.7
							128	130	2	D-27156	0.282	0.34 4	299	20.3
							130	132	2	D-27158	0.322	0.49 4	363	26.7
							132	134	2	D-27159	0.102	0.19 4	90.7	2.99
							134	136	2	D-27160	0.015	0.08 2	8.94	0.47
							136	138	2	D-27161	0.023	0.16 5	13.1	0.6
							138	140	2	D-27163	0.016	0.16 5	18.7	0.27
							140	142	2	D-27164	0.021	0.32 4	45.4	0.36
							142	144	2	D-27165	0.011	0.26 2	10.2	0.29
							144	146	2	D-27166	<0.00 5	0.06	2.16	0.3
							146	148	2	D-27167	0.023	0.18 2	20	0.36
							148	150	2	D-27168	0.006	0.11 8	7.05	0.5
							150	152	2	D-27169	0.006	0.22	7.98	0.33
							152	154	2	D-27170	0.01	0.20 8	6.58	0.59
							154	156	2	D-27171	0.029	0.31	9.33	0.7
							156	158	2	D-27173	0.022	0.26	11.4	0.36

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							158	160	2	D-27174	0.033	0.52 8	23.3	0.98
							160	162	2	D-27175	0.03	0.74 7	17.65	1.06
							162	164	2	D-27176	0.021	0.62 8	42.5	0.38
							164	166	2	D-27178	0.013	0.63 7	238	0.96
							166	168	2	D-27179	0.033	0.48 8	16.55	0.64
							168	170	2	D-27180	0.005	0.09	6.34	0.26
							170	172	2	D-27181	0.173	0.49 2	12.4	0.91
							172	174	2	D-27183	0.056	1.65	6.86	1.41
							174	176	2	D-27184	0.188	9.37	31	3.81
							176	178	2	D-27185	0.078	1.78	9.85	4.42
							178	180	2	D-27186	0.021	0.33 3	4.58	0.55
							180	182	2	D-27187	0.036	0.66	25.2	0.44
							182	184	2	D-27188	0.018	0.30 3	23.4	0.43
							184	186	2	D-27189	0.015	0.19 7	26.5	0.4
							186	188	2	D-27190	0.037	0.65 6	23.4	0.87
							188	190	2	D-27191	0.111	1.21	37	1.11
							190	192	2	D-27193	0.036	0.43 9	17.05	1.35
							192	194	2	D-27194	0.03	0.50 8	36.5	0.58
							194	196	2	D-27195	0.027	0.29 8	44.9	2.15
			1				196	198	2	D-27196	0.245	5.93	230	3.25
							198	200	2	D-27198	0.062	1.01	51.1	2.19
							200	202	2	D-27199	0.062	0.59 7	38.3	0.52
							202	204	2	D-27200	0.017	0.39 2	25.4	0.49

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							204	206	2	D-27201	<0.00 5	0.27	23.8	0.52
							206	208	2	D-27203	<0.00 5	0.25 6	9.77	0.36
							208	210	2	D-27204	<0.00 5	0.24 3	7.07	0.46
							210	212	2	D-27205	<0.00 5	0.23 3	11.05	0.46
							212	214	2	D-27206	0.007	0.48 5	8.48	0.44
							214	216	2	D-27207	0.006	0.45 3	9.46	0.3
							216	218	2	D-27208	<0.00 5	0.38 1	3.05	0.88
							218	220	2	D-27209	<0.00 5	0.32 8	3.78	0.32
							220	222	2	D-27210	<0.00 5	0.17 6	15.8	0.3
							222	224	2	D-27211	0.007	0.20 1	16.1	0.24
							224	226	2	D-27213	<0.00 5	0.14	3.48	0.24
							226	228	2	D-27214	0.006	0.32 3	1.06	0.23
							228	230	2	D-27215	0.007	0.16 4	6.36	0.43
							230	232	2	D-27216	0.011	0.21 9	10.85	1.41
TS_DH_0 7	423815	584526	123 5	234	-70	340.2	2.9	4.9	2	D-29002	0.539	0.18 7	430	3.55
							4.9	7	2.1	D-29003	0.983	0.30	433	18.9 5
							7	9.1	2.1	D-29004	1.015	0.46 9	466	19.3
							9.1	11.5	2.4	D-29005	0.421	0.56 6	589	12.2 5
							11.5	13.2	1.7	D-29006	0.343	0.25 4	638	9.93
							13.2	15.3	2.1	D-29007	0.357	0.21	584	26.3
							15.3	17.6	2.3	D-29008	0.512	0.21	591	25.5

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
												2		
							17.6	20	2.4	D-29009	0.646	0.22	688	19.2
							20	22.3	2.3	D-29010	1.135	0.38 6	695	16.9
							22.3	24.9	2.6	D-29012	0.995	0.42 2	994	26.3
							24.9	27.2	2.3	D-29013	0.813	1.45 5	887	38.8
							27.2	30.35	3.15	D-29014	0.826	2.44	321	31
							30.35	32.2	1.85	D-29015	0.775	1.24	733	35.6
							32.2	34.2	2	D-29017	0.819	1.91 5	861	29.3
							34.2	36	1.8	D-29018	1.735	2.22	1275	87.8
							36	38	2	D-29019	1.995	1.58 5	784	41.4
							38	40	2	D-29020	0.859	1.42	586	36.4
							40	42	2	D-29022	0.418	0.90 2	423	24.8
							42	44	2	D-29023	0.939	1.13 5	608	28.4
							44	46	2	D-29024	0.787	1.02	703	35.5
							46	48	2	D-29025	0.816	1.96 5	1025	31
							48	50	2	D-29026	0.609	1.85 5	663	30.6
							50	52	2	D-29027	0.61	1.13	648	30.3
							52	54	2	D-29028	0.312	0.74 5	467	43.7
							54	56	2	D-29029	1.155	1.33 5	671	337
							56	58	2	D-29030	0.959	1.24	549	105. 5
							58	60	2	D-29032	1.41	0.91 8	700	35.8
							60	62	2	D-29033	1.115	0.64 3	547	26
							62	64	2	D-29034	1.505	0.71 3	745	39.4

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							64	66	2	D-29035	1.315	0.88	623	82.3
							66	68	2	D-29037	0.908	1.23 5	743	35.7
							68	70	2	D-29038	1.49	1.03	895	64.2
							70	72	2	D-29039	1.33	1.11 5	708	27.2
							72	74	2	D-29040	0.619	0.74 9	512	23.7
							74	76	2	D-29042	0.713	1.11 5	600	57.7
							76	78	2	D-29043	0.797	0.95	610	32.7
							78	80	2	D-29044	0.778	0.87 6	298	41.6
							80	82	2	D-29045	0.545	0.48 6	429	20
							82	84	2	D-29046	0.734	0.56 1	484	35.4
							84	86	2	D-29047	0.94	1.47 5	512	66.3
							86	88	2	D-29048	0.539	1.21 5	437	34
							88	90	2	D-29049	0.439	0.51 4	309	50.8
							90	92	2	D-29050	0.502	0.73 6	331	34.5
							92	94	2	D-29052	0.27	0.55 2	369	22.7
							94	96	2	D-29053	0.802	0.99 9	871	164. 5
							96	98	2	D-29054	1.185	1.87 5	903	59
							98	100	2	D-29055	0.675	0.54	445	28.1
							100	102	2	D-29057	1.485	5	954	47.1
							102	104	2	D-29058	0.307	0.37 6	254	7.47
							104	106	2	D-29059	0.336	0.45 1	265	11.8 5
							106	108	2	D-29060	0.787	0.45 9	516	12.1 5

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							108	110	2	D-29062	1.195	0.74 8	885	10.3 5
							110	112	2	D-29063	0.37	0.52 3	205	7.87
							112	114	2	D-29064	0.161	0.17 5	117	8.85
							114	116	2	D-29065	0.459	0.54 8	293	18.8
							116	118	2	D-29066	0.137	0.12 2	135.5	9.68
							118	120	2	D-29067	0.248	0.30 5	265	10.2
							120	122	2	D-29068	0.705	0.33 5	371	11.1
							122	124	2	D-29069	0.935	0.37 7	696	27.6
							124	126	2	D-29070	0.842	0.43 5	670	13
							126	128	2	D-29072	0.821	0.29 4	376	46.5
							128	130	2	D-29073	1.155	0.32 2	442	40.6
							130	132	2	D-29074	0.978	0.42 7	404	41.9
							132	134	2	D-29075	1.97	1.1	1035	108
							134	136	2	D-29077	0.999	0.71 4	644	85.2
							136	138	2	D-29078	0.551	0.44 9	406	28
							138	140	2	D-29079	0.155	0.23 4	266	12.2
							140	142	2	D-29080	0.28	0.44 5	338	15.5 5
							142	144	2	D-29082	0.986	0.72	1090	25.6
							144	146	2	D-29083	1.7	0.88	1600	65.1
							146	148	2	D-29084	1.415	1.13	2140	48
							148	150	2	D-29085	0.757	0.66 7	1150	27

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							150	152	2	D-29086	0.943	0.59 5	878	41
							152	154	2	D-29087	1.22	0.65	1125	19.9
							154	156	2	D-29088	1.945	1.02	1830	39.5
							156	158	2	D-29089	2.07	0.64 1	1420	45.1
							158	160	2	D-29090	1.56	1.04 5	1515	21
							160	162	2	D-29092	0.992	0.47 8	856	20.9
							162	164	2	D-29093	1.585	0.63	1710	31.7
							164	166	2	D-29094	1.115	0.54	972	34.3
							166	168	2	D-29095	0.88	0.51 5	805	45.3
							168	170	2	D-29097	0.753	0.44	732	16
							170	172	2	D-29098	1.055	1.39 5	881	60.6
							172	174	2	D-29099	0.978	1.06	665	313
							174	176	2	D-29100	1.26	0.97 8	831	186
							176	178	2	D-29102	0.755	0.58	387	97.4
							178	180	2	D-29103	2.15	1.12 5	1030	28
							180	182	2	D-29104	3.01	0.79 8	1180	28.3
							182	184	2	D-29105	1.08	0.57	609	13
							184	186	2	D-29106	2.41	0.47 8	979	24.7
							186	188	2	D-29107	1.865	0.77 2	792	20.5
							188	190	2	D-29108	3.93	1.91	1525	52.2
							190	192	2	D-29109	3.96	1.03 5	1245	24.7
							192	194	2	D-29110	1.965	0.47	918	24.2
							194	196	2	D-29112	1.39	1.86	1010	26.5
							196	198	2	D-29113	1.2	1.1	815	26

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							198	200	2	D-29114	3.45	1.15	1195	21.1
							200	202	2	D-29115	0.992	1.02	640	19.7
							202	204	2	D-29117	1.055	1.36 5	882	41.1
							204	206	2	D-29118	2.04	0.70 4	1065	21.6
							206	208	2	D-29119	1.57	1.43 5	1145	34.8
							208	210	2	D-29120	0.549	0.43 9	462	26.9
							210	212	2	D-29122	0.84	0.74 8	605	25.6
							212	214	2	D-29123	0.636	0.69 6	583	14.4
							214	216	2	D-29124	0.749	0.66	640	29.3
							216	218	2	D-29125	0.735	0.54 4	569	26.8
							218	220	2	D-29126	0.777	0.91 7	607	31.9
							220	222	2	D-29127	0.946	1.26 5	720	19.6 5
							222	224	2	D-29128	0.552	0.79 3	431	12.4 5
							224	226	2	D-29129	0.616	1.4	425	7.64
							226	228	2	D-29130	0.518	0.65 3	336	7.17
							228	230	2	D-29132	0.808	1.04 5	840	14.0 5
							230	232	2	D-29133	0.621	0.81 2	449	11
							232	234	2	D-29134	0.719	0.81 9	352	6.46
							234	236	2	D-29135	0.654	0.79 9	411	9.26
							236	238	2	D-29137	0.489	0.93 4	538	13.4
							238	240	2	D-29138	0.537	1.19	573	11.3
							240	242	2	D-29139	0.651	0.82 9	446	14.8

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva I	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
							242	244	2	D-29140	1.9	2.62	913	14.3
							244	246	2	D-29142	1.25	1.41	840	13.4 5
							246	248	2	D-29143	1.005	0.73 2	517	8.88
							248	250	2	D-29144	0.711	0.55 2	391	9.04
							250	252	2	D-29145	0.508	0.61 3	385	10.3 5
							252	254	2	D-29146	0.557	0.63 5	339	8.93
							254	256	2	D-29147	0.681	0.92 5	461	10.4 5
							256	258	2	D-29148	0.375	0.87	415	6.24
							258	260	2	D-29149	0.32	0.44 4	335	6.74
							260	262	2	D-29150	0.418	0.30	225	5.01
							262	264	2	D-29152	0.42	0.21	196	4.68
							264	266	2	D-29153	0.256	0.16	44.2	2.97
							266	268	2	D-29154	0.207	0.21	110.5	4.7
							268	270	2	D-29155	0.528	0.42	298	6.5
							270	272	2	D-29157	1.355	0.78 2	638	6.54
							272	274	2	D-29158	0.519	0.44	266	4.64
							274	276	2	D-29159	0.481	0.34 5	156.5	3.76
							276	278	2	D-29160	0.317	0.24 3	144	2.22
							278	280	2	D-29162	0.184	0.33	78.4	1.59
							280	282	2	D-29163	0.147	0.24	105.5	2.01
							282	284	2	D-29164	0.324	1.08 5	498	3.66
		1					284	286	2	D-29165	0.339	1.05	504	3.69

	Eastin g	Northin g	RL	Azimuth	Declinatio n	Hole Depth	From	То	Interva	Sample No	ppm	ppm	ppm	ppm
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)		Au	Ag	Cu	Мо
												5		
							286	288	2	D-29166	0.259	0.25 7	349	2.67
							288	290	2	D-29167	0.193	0.31 6	280	5.16
							290	292	2	D-29168	0.227	0.77 6	446	6.6
							292	294	2	D-29169	0.504	1.03 5	505	7.52
							294	296	2	D-29170	2.13	1.74 5	1160	19.4 5
							296	298	2	D-29172	0.41	0.58 9	414	8.72
							298	300	2	D-29173	0.368	0.67 3	456	6.6
							300	302	2	D-29174	0.059	0.34 7	143	1.79
							302	304	2	D-29175	0.146	0.43 2	160.5	2.64
							304	306	2	D-29177	0.254	0.65 9	178	2.13
							306	308	2	D-29178	0.267	0.53 9	156.5	2.16
							308	310.4	2.4	D-29179	0.975	1.14 5	536	3.18
							310.4	312.8	2.4	D-29180	0.607	1.32 5	632	5.41

Appendix C

Cross-sections to accompany Summary Exploration Results Plan (Figure 2)

Appendix D GLOSSARY

Terms and abbreviations:

Ag Chemical symbol for silver

Alteration	Changes in the chemical or mineralogical composition of a rock, generally produced by weathering or hydrothermal solutions.
Andesite	Andesite is an extrusive rock intermediate in composition between rhyolite and basalt. Andesite lava is of moderate viscosity and forms thick lava flows and domes Andesite is the volcanic equivalent of diorite.
.Basalt	Basalt is a mafic extrusive rock, is the most widespread of all igneous rocks, and comprises more than 90% of all volcanic rocks.
Breccia	Breccia is a rock classification, comprises millimetre to metre-scale rock fragments cemented together in a matrix.
Chalcopyrite	The mineral sulphide of iron and copper, CuFeS2; sometimes called copper pyrite or yellow copper ore.
Chargeability	Chargeability is a physical property related to conductivity. Chargeability is used to characterise the induced polarisation within a rock, under the influence of an electric field, suggesting sulphide mineralisation at depth.
Chlorite	Chlorite is a group of common sheet silicate minerals that form in the early stages of metamorphism.
Cu	Chemical symbol for copper
Dacite	Dacite is a felsic extrusive rock, intermediate in composition between andesite and rhyolite. It is often found associated with andesite, and forms lava flows, dikes, and, in some cases, massive intrusions in the centres of old volcanoes. Dacite is the volcanic equivalent of granodiorite.
Diorite	Is an intrusive rock intermediate in composition between gabbro and granite, produced in volcanic arcs. Diorite is the plutonic equivalent of andesite.
Granodiorite	Granodiorite is an intrusive rock, intermediate between diorite and granite.
Induced Polarisation	Induced polarisation (IP) is a geophysical survey used to identify the electrical chargeability of subsurface materials, such as sulphides.
Phyllic alteration	Hydrothermal alteration typically resulting from removal of sodium, calcium, and magnesium from calc-alkalic igneous rocks, with pervasive hydrous replacement of most silicates, (e.g. K-feldspar to sericite), usually destroying the original rock texture and it may form a schistose texture. It is a common style of alteration in porphyry base-metal systems around a central, higher temperature zone of potassic alteration.
Plagioclase	Plagioclase is a series of tectosilicate minerals within the feldspar group
Porphyry	Igneous rock containing conspicuous phenocrysts (crystals) in fine-grained or glassy groundmass
Porphyry vein types	A-type veins are formed early and derived from a magmatic fluid and provide very saline fluid inclusions; M-type veins are A veins rich in magnetite; B-type veins overprint A and M veins in the staged porphyry paragenetic sequence, are characterised by central sulphide-bearing bands within quartz; C-type veins are categorised as sulphide veins dominated by mixtures of pyrite-chalcopyrite + bornite, and represent a means to transport the sulphides which fill the centre of B veins and many M and locally A veins. They therefore overprint A, M and B veins; D-type veins form in the late stages of porphyry development and may extend some distance outside the porphyry into the overlying host rocks. These veins are dominated by pyrite.
Potassic alteration	Potassic alteration is characterised by the presence of secondary K-feldspar and/or biotite as replacement, fracture/veins and selvages to quartz veins, in conjunction with silica and sulphides such as pyrite, chalcopyrite and bornite.
Propylitic alteration	Propylitic alteration is the chemical alteration of minerals within a rock, caused by hydrothermal fluids. This style of alteration typically results in epidote- chlorite+-albite alteration and veining or fracture filling, commonly altering biotite or amphibole minerals within the rock groundmass, typically along with pyrite.
Pyrite	Mineral of iron and sulphur, iron sulphide, chemical symbol FeS2
Quartz	Mineral composed of silicon dioxide.
W	Chemical symbol for tungsten
Zn	Chemical symbol for zinc