

DRILLING AT TESORITO CONFIRMS AND EXPANDS GOLD BEARING PORPHYRY

Highlights

- Assays from hole TS_DH_04 include:
 - 179.8m @ 0.7g/t Au from surface
 - o including 21.8m @ 1.03g/t Au from surface
 - o and 90.0m @ 0.83g/t Au from 26.8m
- Assays from TS_DH_05 include (partial results)
 - o 212.7m @ 0.39 g/t Au from surface
 - o including 32.2m @ 0.77 g/t Au from surface
 - o and 15.5m @ 0.61 g/t Au from 112.6m
- Assays expected for remainder of TS_DH_05; and 06 and 07 in August 2018.
- This and previous drilling confirms the gold mineralisation (over 0.5 g/t Au) is extensive in area (400m x 180m); is open laterally to the north-northeast, east-southeast and at depth.
- Intensive phyllic alteration intercepted in TS_DH_05, with increasing base metal mineralisation and potassic alteration with depth, similar trends seen in most holes reported to date, suggest the central zone of the Tesorito porphyry system is located primarily beneath the existing Induced Polarisation ("IP") anomaly.

Executive Chairman Mr. Kevin Wilson said of the results "The intensity of hydrothermal alteration seen at Tesorito together with prolific gold mineralisation already recognised in the Quinchia district and elsewhere in the Cauca belt suggests this to be major mineralising system which offers great potential for exploration success. In the classic porphyry model, the mineralisation seen at Tesorito could be the gold cap to base metal mineralisation at depth."

Summary

Metminco Limited (ASX & AIM: MNC) ("**Metminco**" or the "**Company**") is pleased to announce the results of the assays received to date for the first two diamond drill holes (partial results received for the TS_DH_05) from its Tesorito gold prospect in the Quinchia district, Colombia (Table 1). The Quinchia district occurs in the mid Cauca belt, host to large gold deposits such as La Colosa (28Mozs) and Quebradona (21Mozs) (Figure 1).

The Tesorito prospect occurs 800m south east of the Company's Miraflores deposit (0.88Moz gold Resource) and approximately 3km south east of the Company's Dosquebradas deposit (0.92Moz gold Resource estimated under NI 43-101 – see announcement dated 7 March 2016). It is also located approximately 2km north of the large undrilled Chuscal porphyry target.

The Company's current 1,500m diamond drilling program, is designed to confirm and expand the gold mineral system intersected in drilling by a previous operator. This included hole TS_DH_02 which reported 384m @ 1.1g/t Au from surface to end-of-hole (Table 1, refer announcement 7 March 2016). The program will also test a previously undrilled geophysical anomaly located approximately 300m to the northwest of TS_DH_02 (Figure 2).

Figure 1. The Cauca Belt of Colombia, with the location of Metminco's Miraflores resource at Quinchia, which is adjacent to Tesorito.

Although early in its exploration history, Metminco believes the mineralisation at Tesorito represents the gold-rich cap of a deeper base-metal rich porphyry system. This is supported by the phyllic alteration and increasing base-metal content and igneous activity with depth seen in several holes.

The intensity of hydrothermal alteration seen at Tesorito together with prolific gold mineralisation already recognised in the Quinchia district and elsewhere in the Cauca belt suggests this to be major mineralising system which offers great potential for exploration success.

Next Steps

- receipt of assays from the final 2 diamond holes and remainder of TS_DH_05
- undertake a detailed logging program on the recently acquired drill core supported by mineralogical analysis to determine vectors for focusing next stage exploration drilling.

Results

The program is comprised of four moderate-depth diamond drill holes (Figures 2, 3, 4, 5 and 6) with results summarised in Table 1 below.

Metminco Limited ABN 43 119 759 349 ASX Code: MNC.AX; AIM Code: MNC.L

www.metminco.com.au

Drill Hole	Assays
TS_DH_01 Previously drilled and reported	266.5m @ 0.46 g/t Au, 0.58 g/t Ag and 0.034% Cu from 83.5m
TS_DH_02 Previously drilled and reported	384.0m @ 1.01 g/t Au, 0.86 g/t Ag and 0.084% Cu from 16.0m
	including 32.5m @ 1.34 g/t Au, 0.81 g/t Ag and 0.094 % Cu from 48.8m
	and 156.6m @ 1.28 g/t Au, 0.93 g/t Ag and 0.085% Cu from 88.3m
	and 3.95m @ 3.43 g/t Au, 6.67 g/t Ag and 2.63% Cu from 390.8m
TS_DH_03 Previously drilled and reported	254.9m @ 0.51 g/t Au, 0.67 g/t Ag and 0.052% Cu from 9.3m
TS_DH_04	179.8m @ 0.70 g/t Au, 0.91 g/t Ag and 0.064% Cu from 3m
	including 21.8m @ 1.03 g/t Au, 0.92 g/t Ag and 0.077% Cu from 3m
	and 90.0m @ 0.83 g/t Au, 1.05 g/t Ag and 0.078% Cu from 26.8m
	2m @ 17.95 g/t Ag, 1.99 g/t W and >1% Zn from 343.0m
TS_DH_05 Full results pending	212.72m @ 0.39 g/t Au, 0.72 g/t Ag and 0.053% Cu from 4.7m
	including 32.2m @ 0.77 g/t Au, 0.61 g/t Ag and 0.072 & Cu from 4.7m
	and 15.5m @ 0.61 g/t Au, 0.83 g/t Ag and 0.063% Cu from 112.6m
	and 3.95m @ 0.75 g/t Au, 3.82 g/t Ag, 0.139% Cu, 52.7 ppm Pb, and 168.0 ppm Zn from 211.8m

Table 1. Summary assay results from all drill holes to date at Tesorito.

From the results received to date from Tesorito and the previous historical drilling:

- all 5 holes drilled into have returned gold mineralisation from a multi-phase porphyritic intrusive complex
- the gold mineralisation is extensive in area, and occupies at least 400m x 180m and is open laterally to the north-northeast and east-southeast
- higher grade gold areas of over 1 g/t Au occur within the broader mineralisation envelope of approximately 0.5 g/t Au
- depth of porphyry mineralisation has been seen up to 380m below surface (TS_DH_02) and the presence of garnets in previous and present drill core are indicative of a deep vertical plumbing system
- intense phyllic alteration mapped by the significant IP anomaly located to the west of the known Tesorito porphyry and seen in the surface mapping and sampling and the drill core, suggests a major hydrothermal system exists approximately 200-300m to the north west of the locus of the Tesorito prospect

- phyllic alteration is generally indicative of the upper and lateral zones of a porphyry system. There is a general increased presence of A-, B-, and M-type veining down-hole in holes drilled towards the IP anomaly. Furthermore, initial logging indicates a general increase in the presence of potassic alteration in the same direction along with an increasing presence of base metals with depth. These factors are all pointing to the central zone of the Tesorito porphyry system being located primarily beneath the IP anomaly with porphyry-associated mineralisation extending laterally upwards from it
- the localised controls on higher order gold mineralisation traversed by TS_DH_02 and TS_DH_04 require further investigation to determine their distinct characteristics, and their likelihood of being repeated within the porphyry complex

Figure 2. Plan of Tesorito drilling, showing location of drill traces and IP anomaly. Section B-B' is presented as Figure 4 (below), the other sections are appended with Table 1.

Details of the Program

TS_DH_04 was collared from the same platform that was used to drill TS_DH_02 and was drilled at a steeper angle (70 degrees) to test the well-mineralised stockwork veining developed in porphyritic sub-volcanic (shallow depth) dacitic and andesitic intrusives.

TS_DH_05 was drilled to test for lateral and upward extensions of the well-mineralised stockwork veining traversed by drill hole TS_DH_02. In addition, TS_DH_05 was designed to test the nature and extent of the mineralisation beneath the >100 ppb gold in soil geochemical anomaly and the high grade (up to 2m at 6.6 g/t Au - refer announcement 27 March 2018, Appendix D) gold assays returned from sampling in trenches.

TS_DH_06 was drilled principally to test the nature and extent of what has caused the strong IP geophysical response over a north-northeast trending 1,000m long x 300m wide zone developed to the northwest of the gold in soil geochemical anomaly. It was designed to traverse the zone which was modelled to have the strongest coincident chargeability and conductivity readings.

TS_DH_07 was designed to test the three-dimensional geometry of the higher-grade mineralisation returned from TS_DH_02 and any mappable controls which could assist in determining the extent and frequency of the higher-grade zones within the porphyry complex.

Details of the drill results

TS_DH_04 has confirmed the continuation at depth of the gold mineralisation beneath TS_DH_02 over similar intervals and grade for the first 180m, with downhole intercept of 179.8m @ 0.70 g/t Au, 0.91 g/t Ag and 0.064% Cu, including 21.8m @ 1.03 g/t Au, 0.92 g/t Ag and 0.077% Cu and 90.0m @ 0.83 g/t Au, 1.05 g/t Ag and 0.078% Cu. The gold mineralisation is associated with stockwork veining exhibiting A-, B- and M-type veins that typify porphyry-style mineralisation as shown in Figure 3.

The drill hole then passed through an alternating sequence of basement blocks separated by relatively narrow intrusive porphyritic dacitic and andesitic dykes and was terminated in basement rocks at 400m. The basement blocks comprised contact metamorphosed arkosic sandstones likely to be part of the Tertiary-aged Amaga Formation and deformed fine-grained basaltic lavas of the Cretaceous Barroso Formation.

Of further interest, TS_DH_04 intercepted a zone of high strain within basement (basalt) from 343m to 345m that returned assays of 17.95 g/t Ag, 1.99 g/t W and >1% Zn. A discreet, narrow high-grade intercept returned 3.43 g/t Au, 6.67 g/t Ag and 2.63% Cu from a 3.95m sample intercepted from near the base (390.8m to 391.5m depth) of hole TS_DH_02 within porphyritic dacite. Further work is warranted to better understand the significance, nature and extent of these high-grade polymetallic mineralised intercepts in the context of the porphyry system.

TS_DH_05 has confirmed the presence of stockwork veining developed in porphyritic sub volcanic dacitic and andesitic intrusives from 0 to 293m depth down hole, after which it passed into a less veined but increasingly sericite-altered porphyry for the remainder of the hole, which was terminated at 390.5 m. TS_DH_05 returned mineralised intercepts of 212.7m @ 0.39 g/t Au, 0.72 g/t Ag and 0.053% Cu from 4.7m, with the assay results still pending for the remaining 174m to end of hole. The extent and tenor of the mineralisation, as determined from assay results received to date, closely resembles the results obtained from TS_DH_01 located some approximately 100m towards the north east.

Figure 3. Core photographs showing porphyry with veinlet styles.

- A. TS_DH_04 (80.7m) Medium grained andesite porphyry, with A quartz veins and potassic feldspar halos.
- B. TS_DH_04 (87.2m) Medium and coarse-grained andesite porphyry, with intrusive breccia and A vein.
- C. TS_DH_07 (153.5m) Fine grained andesite porphyry, with B quartz veins.
- D. TS_DH_07 (200.3m) Medium grained andesite porphyry, with intrusive breccia.

Figure 4. Cross section B-B' from Figure 2 showing TS_DH_04; TS_DH_05; TS_DH_07 (in progress) and the IP chargeability anomaly.

 Metminco Limited
 ABN 43 119 759 349
 Suite 3, Level 3, 470 Collins Street, Melbourne, Victoria, 3000

 ASX Code:
 MNC.AX;
 AIM Code:
 MNC.L
 Tel: +61 (0) 3 9867-7199;
 Fax: +61 (0) 3 9867-8587

www.metminco.com.au

The last two samples for which results have been received from TS_DH_05 returned assays of 3.95m at 0.75 g/t Au, 3.82 g/t Ag, 0.139% Cu, 52.7 ppm Pb, and 168.0 ppm Zn from 211.8m to 215.5m. This suggests an elevated base metal assemblage which supports the observation from holes TS_DH_02 and TS_DH_04 of an increase in base metals with depth and closer proximity to the IP geophysical anomaly.

TS_DH_06 returned core exhibiting similar lithologies to those encountered in the lower hundred metres of TS_DH_05, comprising increasingly sericite-altered porphyritic dacitic and andesitic intrusive rocks. The intense sericite alteration, commonly referred to as phyllic alteration, is an important component of porphyry-style precious and base metal systems and is considered the likely cause of the strong IP geophysical response. The fact that this significantly intense anomaly extends for nearly 1km along the western limits of the porphyritic intrusive complex is indicative of a large zone of intensive phyllic alteration likely to be associated with a porphyry-style hydrothermal system of significant scale and intensity. Assay results from TS_DH_06 have not been received at the time of this release.

TS_DH_07 is in the process of being completed at the time of this release and samples are being prepared for submission to the laboratory. The rocks encountered are logged as well-veined porphyry similar to that encountered in TS_DH_02 and the upper parts of TS_DH_04 (Figure 2).

Results from the deeper part of TS_DH_05 as well as 06 and 07 are expected during August 2018.

For further enquiries contact: Kevin Wilson

Executive Chairman Metminco Limited; <u>kwilson@metminco.com.au</u>; +61 409 942 355

The Glossary of Terms is included as Appendix F in the Attachment Table 1

METMINCO LIMITED

For further information, please contact: METMINCO LIMITED Kevin Wilson	+61 409 942 355
NOMINATED ADVISOR AND BROKER RFC Ambrian Australia Andrew Thomson / Alena Broesder	Office: + 61 2 9250 0000
<i>United Kingdom</i> Charlie Cryer	Office: + 44 20 3440 6800
PUBLIC RELATIONS Camarco United Kingdom	

United Kingdom Gordon Poole / Nick Hennis

Office: + 44 20 3757 4997

Market Abuse Regulation (MAR) Disclosure

The information communicated in this announcement includes inside information for the purposes of Article 7 of Regulation 596/2014.

Forward Looking Statement

All statements other than statements of historical fact included in this announcement including, without limitation, statements regarding future plans and objectives of Metminco are forward-looking statements. When used in this announcement, forward-looking statements can be identified by words such as "anticipate", "believe", "could", "estimate", "expect", "future", "intend", "may", "opportunity", "plan", "potential", "project", "seek", "will" and other similar words that involve risks and uncertainties.

These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, its directors and management of Metminco that could cause Metminco's actual results to differ materially from the results expressed or anticipated in these statements.

The Company cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements. Metminco does not undertake to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by applicable law and stock exchange listing.

COMPETENT PERSONS STATEMENT

The technical information contained in this presentation that relates to exploration results (excluding those pertaining to Mineral Resources and Reserves) is based on information compiled by Mr Gavin Daneel, who is a Member of the Australasian Institute of Mining and Metallurgy and who is an independent Consulting Geologist. Mr Daneel has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and to qualify as a Qualified Person for the purposes of the AIM Rules for Companies. Mr Daneel consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

The Company is not aware of any new information or data that materially affects the information included in this announcement.

Metminco Limited ABN 43 119 759 349 ASX Code: MNC.AX; AIM Code: MNC.L Suite 401, Level 4, 6 Help Street, Chatswood, NSW, 2067 Tel: +61 (0) 2 9460 1856; Fax: +61 (0) 2 9460 1857

www.metminco.com.au

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Soil samples were obtained from the C-Horizon, bagged and tagged with unique sample identity numbers, transported and submitted to ALS Colombia Ltda located in Medellin for sample preparation. Sample preparation included drying at <60°C, sieve sample to -180 micron (80 mesh) from which a representative 30g sample was obtained using a riffle splitter. Gold assays were obtained using a lead collection fire assay technique (FAA313) and assays for an additional 54 elements were obtained using multi-acid (four acid) digest (ICM40B) at ALS's laboratory in Lima, Peru. Details of the rock-chip sampling technique are not known. The sample preparation and assaying techniques were the same as for the soil samples. Diamond drilling was used for historic holes drilled to obtain, on average, 1.8m samples (ranging from 0.5m to 4.1m) from which half core (cut using a diamond saw) was pulverized and a representative sample of 30g was used for fire assay, with an atomic adsorption spectrophotometer (AAS) finish. Diamond drilling was used for the current holes drilled to obtain, on average, 1.8m samples (ranging from 0.7m to 3.6m) from which half core (cut using a diamond saw) was pulverized and a representative sample of 30g was used for fire assay, with an atomic adsorption spectrophotometer (AAS) finish for Au, and 48 other elements were assayed from a 0.25g representative sample using the four-acid super trace analytical method. All technical information relating to mineral exploration undertaken prior to 2018 that is contained within this announcement has been previously publicly disclosed to the extent required under the Canadian NI 43-101 standards during 2013 and 2014. Specifically, earlier disclosures stated that the data, including the sampling data underlying the information in the earlier releases, had been verified.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• The exploration drilling consisted of core recovered using diamond drilling methods from surface. Diamond core drilling was conducted by an independent contractor (Logan drilling Colombia SAS) based in Medellin. The holes were drilled using an HQ drill bit with the first 20 to 30 m drilled by HWT and cased. The core was not oriented.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and 	 Soil, laterite and saprolite recovered and sampled. Cored rock recovery was measured and recorded. RQD was also measured and recorded. Drill core was measured and regularised at the point of exchange from the drilling contractor to the company to ensure acceptable levels of sample recovery.

Criteria	JORC Code explanation	Commentary
	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Core recovery was good, and no significant intervals of core loss were recorded. Consequently, it is unlikely that any bias exists between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The core has been geologically logged and sampled to a level of detail to support geological modelling and mineralisation sufficient for use in a mineral resource estimate. The drill holes have been logged from beneath the soil cover (approximately 10m to 15m) to the end of hole in their entirety. Sampling of the drill core was generally undertaken on a 2 m interval basis, unless rock types or recoveries indicated a more appropriate sample interval.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Half core sampling every 2 m was undertaken with a diamond core saw, with individual samples bagged and recorded. The bagged samples were placed into larger bags that were tagged and labelled for transport in batches. All bagged samples were locked overnight in a special storage facility and each batch was transported by a locked company truck and company driver to Medellin. Sampling has been undertaken over a range of intervals reflecting significant changes in geology while attempting to maintain a 2m sample interval. This is appropriate for the stage of exploration and the style of mineralization of the prospect drilled. All technical information relating to mineral exploration undertaken prior to 2018 that is contained within this announcement has been previously publicly disclosed to the extent required under the Canadian NI 43-101 standards during 2013 and 2014. Specifically, earlier disclosures stated that the data, including the sampling data underlying the information in the earlier releases had been verified.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Core samples were independently prepared by ALS Colombia Ltda in Medellin and were independently assayed at the ALS laboratory in Lima, Peru. Gold was analyzed by fire assay on a 30-gram sample with atomic adsorption spectrophotometer (AAS) finish. Samples above 10.0 g/t Au were repeated by fire assay on a 30-gram sample with gravimetric finish. Multi-elements were analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) following multi-acid digestion. Blank, standard and duplicate samples were routinely inserted for quality assurance and quality control. The quality control procedures were established and adopted under the supervision of an independent external consultant (S Wilson) of resource development associates Inc. based in the United States of America. All information relevant to the quality control protocol is forwarded to the independent external consultant for their analysis. Preliminary results indicate that acceptable levels of accuracy and precision have been established.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Half core samples including blanks, duplicates and standards were forwarded to ALS laboratories in Medellin for analysis. The results received from the laboratory were then cleared of the blanks, duplicates and standards and the remainder reported and recorded separately. Samples requiring further checking then submitted to a second laboratory (SGS in Medellin) for independent analysis using a comparable analytical technique. All pulps and rejects return to the company storage facility in Quinchia. No holes have been twinned. All results are stored in both hard copy and soft copy in dedicated cabinets and site computers respectively along with a second soft copy on the company server in Medellin. No adjustments have been made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The collar locations were surveyed using a differential GPS and the downhole down hole surveys were undertaken at 30m depth increments using a reflex instrument. Locational data has been surveyed and recorded using a variety of grid systems (including WGS 84 / Zone 18 North) but spatial records have reportedly been standardized using the MAGNA-SIRGAS / Colombia Bogota zone grid system. Topographic control has been taken from LiDAR data that was captured by a Riegl VQ-480, laser mounted in a Hughes 500 helicopter. The data was collected in two flights occurring on April 3 and 4, 2012 which cover the Tesorito Prospect area. This survey techniques produces topographic control of a high quality and adequacy.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Soil samples were taken on a regular grid, from sites located on a 50m spacing along 200m separated grid lines. Rock-chip samples have been taken discontinuously along road cuttings and drainage channels. Seven diamond drill holes have been drilled, located between 102m and 190m apart. The number and spacing of the holes drilled to date is not sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource Estimate.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The nature and extent of the geochemical sampling (soil and rock-chip) achieves an unbiased representation of the distribution of the elements assayed. The orientation of the drilling is generally orthogonal to the geology. However, insufficient drilling has been undertaken to date to establish a reasonable understanding on the geometry of the mineralisation. Consequently, the extent of any higher-grade intercepts returned from drilling may not represent the truewidth of the higher-grade mineralization.
Sample	The measures taken to ensure sample security.	Core is secured at drill site by armed guard on a 24/7 basis, delivered by truck from drill site to the regional project core handling facility at Quinchia. All core

Criteria	JORC Code explanation	Commentary
security		and samples are secured in a locked facility at Quinchia and further secured by armed guard on a 24/7 basis. Each batch of samples are transferred in a locked vehicle and driven 165 km to ALS laboratories for sample preparation in Medellin.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 A representative of an independent external consultancy, Resource Development Associates Inc. based in the US, visited site prior to drilling commencing to design sampling and QAQC protocols. The analysis of the QAQC records is currently being conducted and will be reported once completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Independent legal authorities have determined that as of 20th December 2017: All of the Mining Titles were validly issued pursuant to the Former Mining Code or the Mining Code, as applicable on their date of issuance or execution. Concession Agreement grants its holders the exclusive right to explore for and exploit all mineral substances on the parcel of land covered by such concession agreement. There are no outstanding encumbrances or charges registered against the Mining Titles at the National Registry. The Concession Agreement have been duly registered in the name of Miraflores Compañía Minera in the National Registry as tabulated in Appendix B. The granted tenements, (shown in green and cyan), tenements under application (shown in red) and those subject to an Option Agreement with AngloGold Ashanti (shown in shades of yellow and orange) are illustrated in Appendix C. Decree 1374 of June 27, 2013, established the measures to indicate, in a TEMPORARY MANNER, some reserves of natural resources, which in the future may be declared "zones excluded from mining". The degree to which this impacts on the rights attached to pre-existing exploration and exploitation concessions is unclear.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Artisanal gold production was most significant from the Miraflores mines during the 1950's. Interest was renewed in the area in the late 1970's. In the 1980's the artisanal mining cooperative "Asociación de Mineros de Miraflores" (AMM) was formed.
		 In 2000, the Colombian government's geological division, INGEOMINAS, with the permission of the AMM, undertook a series of technical studies at

Criteria	JORC Code explanation	Commentary
		Miraflores, which included geological mapping, geochemical and geophysical studies, and non-JORC compliant resource estimations.
		 In 2005, Sociedad Kedahda S.A. (Kedahda), now called AngloGold Ashanti de Colombia S.A., a subsidiary of AngloGold Ashanti Ltd., entered into an exploration agreement with the AMM, and carried out exploration including diamond drilling in 2005 to 2007 at Miraflores, completing 1,414.75m. In 2007 Kedahda optioned the project to B2Gold Corp. (B2Gold), which carried out exploration including additional diamond drilling from 2007 to 2009, 2210.1 m. B2Gold made a NI 43-101 technical study of the Miraflores Project in 2007. On March 24, 2009, B2Gold advised the AMM that it had decided not to make further option payments and the property reverted to AMM under the terms of the option agreement. Seafield signed a sale-purchase contract with AMM to acquire a 100% interest in the Mining Contract on April 16, 2010. Seafield completed the payments to acquire 100% of rights and obligations on the Miraflores property in November 30, 2012. AMM stopped the artisanal exploitation activities in the La Cruzada tunnel on the same date, November 30, 2012 and transferred control of the mine to Seafield. Since June 2010, Seafield has drilled 63 drillholes for a total of 22,259.25m on the adjacent Miraflores Project. The initial exploration undertaken by Seafield at Tesorito in 2012 and 2013 included systematic geological mapping, rock and soil sampling, followed by trenching within the area of anomalous Au and Cu in soils. Seafield commissioned an Induced Polarisation (IP) survey over the Tesorito Prospect in August 2012 and undertook a three-hole diamond drilling program for a total of 1,150.5m in 2013.
Geology	Deposit type, geological setting and style of mineralisation.	 The Tesorito area is underlain mainly by fine to coarse grained, intrusive porphyritic rocks of granodioritic to dioritic composition, which intrude basaltic rocks of the Barroso Formation of Cretaceous age and Tertiary sandstones and mudstones of the Amaga Formation. The intrusives show variable intensities of hydrothermal alteration, including potassic alteration overprinted by quartz-sericite and sericite-chlorite alteration. NNE, NNW and NW faulting controls the intrusive emplacement and mineralization, including faulting of contacts between the rock units. The depth of sulphide oxidation observed in the drill holes is approximately 20 m. The porphyry-style mineralization of gold, copper and molybdenite observed in the Tertiary intrusive rocks is found as sulphides and magnetite in disseminations as well as in veinlets and stockworks of quartz. Pyrite, chalcopyrite, molybdenite, and minor bornite are the main sulphides observed.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 The results have been reported for all drilling undertaken on the Tesorito Prospect to date (including the first three holes TS_DH_01 – 03) which were drilled by the previous owners of the project. The drill hole information including assay results for selected elements (Au, Ag,

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Cu and Mo) has been compiled and tabulated. See Appendix D accompany this Table 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The results have also been reported for continuous intervals of mineralization greater than 10m with a cut-off grade of 0.5 g/t Au. No cutting of high grades has been done. No metal equivalent grades have been reported for the Tesorito drilling results.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drilling has been directed to be orthogonal to the regional trend of the geology. The intercepts reported are down hole length, true widths are not known at this early stage of drilling.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Geological map showing exploration results including drilling over the Tesorito Prospect is shown in Figure 2. Sectional views of each of the drill holes are shown in Figure 4 and Appendix E
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Combined and included selected intervals of assay results are shown on the sections (Figure 4 and Appendix E) accompanying this Table 1.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious 	 An IP survey, conducted over the Tesorito target zone in August 2012, presented anomalies with high values of chargeability that can be in response to high contents of sulphides and/or the presence of hydrothermal alteration clays. The anomaly covers an area of 500m by 700m and is stronger 50m below the

Criteria	JORC Code explanation	Commentary		
	or contaminating substances.	surface to the west of the area anomalous for gold in soil and rock-chips.		
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling is required to systematically test the nature and extent of both the higher-grade mineralization that appears to be associated with NNW trending sheeted veins, as well as the broader intercepts of NNE-trending moderate-grades related to the porphyry- style mineralization. The causative geology and associated mineralogy accounting for the significant chargeability anomaly needs to be further investigated. 		

Appendix B Tenure Schedule

Tenements Miraflores Comañía Minera SAS

No.	TENEMENT	HOLDER	MINING REGISTRY DATE	EXPIRATION DATE	TIPE OF CONTRACT	STAGE	EXTENSION OF EXPLORATION
1	010-87M	Miraflores Compañía Minera S.A.S.	27/06/1988	An extension of the tenement was requested, which is valid for 15 years and expires in 2019. Likewise, in April, 2017 a preferential right was requested to convert it into a mining concession contract under law 685 and thus be valid for 30 years.	Contribution Contract Decree 2655/88	Exploitation	NA
2	DLK-141	Miraflores Compañía Minera S.A.S.	15/06/2007	15/06/2037	Concesion Contract 685/2001	11° Year of Exploration	Rad. 11-03-2016 for the 10th and11th year
3	DLK-14544X	Miraflores Compañía Minera S.A.S.	1/12/2009	1/12/2039	Concesion Contract 685/2002	9° Year of Exploration	Rad. 29-08-2016 for the 8th and 9th year
4	FCG-08353X	Miraflores Compañía Minera S.A.S.	18 de diciembre de 2009	18/12/2039	Concesion Contract 685/2003	9° Year of Exploration	Rad. 14-09-2016 for the 8th and 9th year
5	FCG-08354X	Miraflores Compañía Minera S.A.S.	6/02/2013	6/02/2043	Concesion Contract 685/2004	6° Year of Exploration	Rad. 01-11-2017 for the 6th and 7th year
6	FCG-08355X	Miraflores Compañía Minera S.A.S.	28/12/2009	28/12/2039	Concesion Contract 685/2005	9° Year of Exploration	Rad. 26-09-2016 for the 8th and 9th year
7	FCG-08356X	Miraflores Compañía Minera S.A.S.	17/09/2010	17/09/2040	Concesion Contract 685/2006	8° Year of Exploration	Rad. 12-06-2017 for the 8th and 9th year
8	FCG-08357X	Miraflores Compañía Minera S.A.S.	21/10/2010	21/10/2040	Concesion Contract 685/2007	8° Year of Exploration	Rad. 16-06-2017 for the 8th and 9th year
9	FCG-08358X	Miraflores Compañía Minera S.A.S.	28/12/2009	28/12/2039	Concesion Contract 685/2008	9° Year of Exploration	Rad. 26-09-2016 for the 8th and 9th year
10	FHH-083	Miraflores Compañía Minera S.A.S.	13/05/2009	13/05/2039	Concesion Contract 685/2009	9° Year of Exploration	Rad. 09-02-2016 for the 8th and 9th year
11	FCG-082	Miraflores Compañía Minera S.A.S.	26/10/2009	26/10/2039	Concesion Contract 685/2010	9° Year of Exploration	Rad. 21-07-2016 for the 8th and 9th year
12	FKH-141	Miraflores Compañía Minera S.A.S.	6/05/2015	6/05/2045	Concesion Contract 685/2011	4° Year of Exploration	Rad. 02-02-2018 para el 4th y 5th year
13	FKH-145510X	Miraflores Compañía Minera S.A.S.	6/05/2015	6/05/2045	Concesion Contract 685/2012	4° Year of Exploration	Rad. 02-02-2018 para el 4th y 5th year
14	FKH-145511X	Miraflores Compañía Minera S.A.S.	6/05/2015	6/05/2045	Concesion Contract 685/2013	4° Year of Exploration	Rad. 02-02-2018 para el 4th y 5th year
15	FKH-145512X	Miraflores Compañía Minera S.A.S.	6/05/2015	6/05/2045	Concesion Contract 685/2014	4° Year of Exploration	Rad. 02-02-2018 para el 4th y 5th year
16	FKH-145513X	Miraflores Compañía Minera S.A.S.	6/05/2015	6/05/2045	Concesion Contract 685/2015	4° Year of Exploration	Rad. 02-02-2018 para el 4th y 5th year
	DLK-142	AGA	22/10/2008	22/10/2038	Concesion Contract 685/2016	10° Year of Exploration	Rad, 22-10-2016 for the 9th and 10th year

Note: Tenements under law 685, are valid for 30 years from the inscription in the mining registry, extendable. The exploration stage has a duration of 3 years extendable for two years up to a maximum of 11 years. Once this stage is completed, construction and assembly must begin. The tenement 010-87 M, is not a concession contract but a contract in the nature of "contribution" and its duration is established in the contract that is 15 years extendable for equal periods.

Applications				
	APPLICATION	APPLICANT		
1	GC4-159-1	AGA		
2	GC4-159-2	AGA		
3	GC4-159-3	AGA		
4	GC4-159-4	AGA		
5	GC4-159-5	AGA		
6	GC4-159-6	AGA		
7	KHL-15421	AGA		
8	KIH-08121	AGA		
9	OG2-08081	AGA		
10	OG2-08112	MCM		
11	OG2-10591	MCM		
12	OG2-8073	MCM		

Appendix C Tenement Map

Appendix D

Drilling Results Table

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Cu	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
TS_DH_01	423950	584525	1213	317	-50	350	10.5	11.8	1.3	D-25811	0.108	0.46	77.1	4.83
							11.8	14.4	2.6	D-25812	0.225	0.48	91.5	2.79
							14.4	16.3	1.9	D-25813	0.176	0.35	72.1	3.31
							16.3	18	1.7	D-25814	0.162	0.19	163.5	1.94
							18	19.3	1.3	D-25815	0.158	0.13	136	1.19
							19.3	21.5	2.2	D-25817	0.115	2.37	96	1.9
							21.5	23.5	2	D-25818	0.119	0.18	109	1.97
							23.5	25.7	2.2	D-25819	0.15	0.16	114.5	3.1
							25.7	26.8	1.1	D-25820	0.09	0.07	41.6	0.77
							26.8	28.2	1.4	D-25822	0.117	0.13	53.1	2.9
							28.2	30.3	2.1	D-25823	0.376	0.73	327	20.6
							30.3	32.3	2	D-25824	0.411	0.26	393	41.5
							32.3	34.3	2	D-25825	0.193	0.18	179	12.5
							34.3	36.3	2	D-25826	0.303	0.24	323	32.7
							36.3	38.2	1.9	D-25827	0.083	0.1	82.1	16.15
							38.2	41.6	3.4	D-25828	0.211	0.17	139.5	5.44
							41.6	43.6	2	D-25829	0.202	0.24	138	6.14
							43.6	45.5	1.9	D-25830	0.263	0.26	190	3.36
							45.5	47.7	2.2	D-25831	0.186	0.26	204	1.44
							47.7	49.7	2	D-25832	0.143	0.29	130	0.3
							49.7	51.7	2	D-25834	0.213	0.24	192.5	0.36
							51.7	53.7	2	D-25835	0.111	0.15	79.8	0.75
							53.7	55.7	2	D-25836	0.14	0.21	124	0.53
							55.7	57.7	2	D-25837	0.056	0.19	45.3	0.22
							57.7	59.7	2	D-25838	0.082	0.13	92	0.3

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							59.7	61.4	1.7	D-25839	0.101	0.11	76.4	0.31
							61.4	62.4	1	D-25840	0.19	0.27	147	0.98
							62.4	63.5	1.1	D-25841	0.123	0.16	82	0.26
							63.5	64.7	1.2	D-25842	0.189	0.15	87.8	0.34
							64.7	65.85	1.15	D-25844	0.152	0.26	80.5	0.67
							65.85	66.5	0.65	D-25845	0.034	0.06	62.9	1.53
							66.5	68.5	2	D-25847	0.037	8.01	3550	3.34
							68.5	71.4	2.9	D-25848	0.139	0.49	132.5	14
							71.4	75.5	4.1	D-25849	0.077	2.07	86.6	2.84
							75.5	77.5	2	D-25850	0.108	0.21	51.2	0.97
							77.5	79.5	2	D-25851	0.133	0.19	75	1.79
							79.5	81.5	2	D-25852	0.145	0.32	95.9	3.09
							81.5	83.5	2	D-25853	0.279	0.34	248	17.55
							83.5	85	1.5	D-25855	0.346	0.29	249	18.15
							85	86.5	1.5	D-25856	0.653	0.56	549	42.8
							86.5	88.5	2	D-25857	0.445	0.42	420	171
							88.5	90.5	2	D-25859	0.322	0.22	236	17.25
							90.5	92.5	2	D-25860	0.26	0.23	179	17.5
							92.5	94.5	2	D-25861	0.308	0.22	191.5	6.38
							94.5	95.7	1.2	D-25862	0.227	0.29	174	17.95
							95.7	96.9	1.2	D-25863	0.427	0.31	266	96.8
							96.9	99	2.1	D-25865	0.555	0.82	414	36.7
							99	101	2	D-25866	0.217	0.2	97	37.1
							101	102.7	1.7	D-25867	0.298	0.22	180.5	52.1
							102.7	104.7	2	D-25868	0.365	0.31	216	98.4
							104.7	106.7	2	D-25869	0.302	0.29	234	40.1
							106.7	108.7	2	D-25870	0.436	0.28	256	22.7
							108.7	110.1	1.4	D-25871	0.204	0.25	140.5	26.9
							110.1	111.5	1.4	D-25873	0.31	0.17	109	12.15
							111.5	113	1.5	D-25874	0.407	0.45	303	61.7
							113	114.5	1.5	D-25875	0.546	1.28	392	31.9

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							114.5	116.1	1.6	D-25876	0.244	0.58	127	17.75
							116.1	118.1	2	D-25877	0.151	0.25	129	8.16
							118.1	120.1	2	D-25878	0.534	0.45	475	24
							120.1	122.1	2	D-25879	0.513	0.43	393	47
							122.1	124.1	2	D-25881	0.534	0.4	388	53
							124.1	126.1	2	D-25882	0.488	0.54	484	41.1
							126.1	128.1	2	D-25884	0.355	0.83	337	25.5
							128.1	130.1	2	D-25885	0.301	0.31	236	17.95
							130.1	132.1	2	D-25886	0.376	0.37	272	15.8
							132.1	134.1	2	D-25887	0.583	0.46	329	114
							134.1	136.1	2	D-25888	0.459	0.45	344	85
							136.1	138.1	2	D-25889	0.301	0.25	177.5	27.2
							138.1	140.1	2	D-25890	0.334	0.34	257	18.15
							140.1	142.1	2	D-25891	0.317	0.27	229	26.9
							142.1	144.1	2	D-25892	0.58	0.44	424	46.1
							144.1	146.1	2	D-25893	0.381	0.31	202	30.6
							146.1	148.1	2	D-25894	0.138	0.22	79.1	11.2
							148.1	149.5	1.4	D-25896	0.142	0.32	95.9	14.45
							149.5	150.8	1.3	D-25897	0.296	0.28	189	83
							150.8	151.8	1	D-25898	0.262	0.25	172.5	22.6
							151.8	153.8	2	D-25899	0.216	0.24	193.5	24.9
							153.8	155.8	2	D-25901	0.28	0.25	185.5	34.4
							155.8	157.8	2	D-25902	0.225	0.21	163.5	39.4
							157.8	159.8	2	D-25903	0.218	0.17	164	28.9
							159.8	161.8	2	D-25904	0.399	0.19	172.5	30.3
							161.8	163.4	1.6	D-25906	0.191	0.15	93.4	14.8
							163.4	164.9	1.5	D-25907	0.329	0.17	139	29.1
							164.9	166.4	1.5	D-25908	0.284	0.21	246	14.1
							166.4	167.35	0.95	D-25909	0.459	0.22	197	48.8
							167.35	168.8	1.45	D-25910	0.258	0.19	201	10.75
							168.8	170.3	1.5	D-25911	0.178	0.15	119	5.83

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Cu	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							170.3	171.9	1.6	D-25912	0.713	0.28	420	14.5
							171.9	173.4	1.5	D-25913	0.162	0.14	131	8.21
							173.4	175.4	2	D-25914	0.214	0.19	151.5	11.2
							175.4	177.4	2	D-25915	0.285	0.14	129.5	11.05
							177.4	179.4	2	D-25916	0.693	0.35	405	9.42
							179.4	181	1.6	D-25917	0.431	0.31	255	21.7
							181	182.5	1.5	D-25918	0.345	0.32	235	22.7
							182.5	184.5	2	D-25920	0.306	0.3	220	29.4
							184.5	186.5	2	D-25921	0.571	0.58	594	80.8
							186.5	188.5	2	D-25922	0.431	0.63	456	16.8
							188.5	190.5	2	D-25924	0.582	0.66	532	26
							190.5	192.5	2	D-25925	0.732	0.49	475	21.7
							192.5	194.5	2	D-25926	0.641	0.45	465	64.2
							194.5	196.5	2	D-25927	0.734	0.7	624	22
							196.5	198.5	2	D-25928	0.401	0.37	372	17.65
							198.5	200.1	1.6	D-25930	0.743	0.52	465	45.7
							200.1	201.7	1.6	D-25931	0.857	0.54	582	33.4
							201.7	203.7	2	D-25932	0.238	0.18	181	20.2
							203.7	205.7	2	D-25933	0.581	0.4	340	11.6
							205.7	207.7	2	D-25934	0.341	0.35	308	34.6
							207.7	209.7	2	D-25935	0.554	0.46	543	28.9
							209.7	211.7	2	D-25936	0.529	0.66	438	32.7
							211.7	213.7	2	D-25938	0.314	0.39	306	25.7
							213.7	215.7	2	D-25939	0.566	0.45	475	20.5
							215.7	217.7	2	D-25940	0.546	0.53	500	58.3
							217.7	219.6	1.9	D-25942	0.27	0.31	249	6.62
							219.6	220.5	0.9	D-25943	0.849	0.41	658	30.2
							220.5	222.5	2	D-25944	0.547	0.35	403	21.1
							222.5	224	1.5	D-25945	0.133	0.19	121	48.3
							224	225.5	1.5	D-25947	0.272	0.31	201	25.6
							225.5	227	1.5	D-25948	0.345	0.36	240	60.4

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							227	227.85	0.85	D-25949	0.378	0.52	485	104
							227.85	229.5	1.65	D-25950	0.625	1.3	607	105.5
							229.5	231.1	1.6	D-25951	0.496	0.68	498	24.5
							231.1	232.7	1.6	D-25952	0.335	0.62	410	20.9
							232.7	233.6	0.9	D-25953	0.489	0.66	573	63.8
							233.6	235.6	2	D-25954	0.162	0.27	141	14
							235.6	237.6	2	D-25955	0.526	0.52	403	30.5
							237.6	239.6	2	D-25957	0.321	0.59	228	8.82
							239.6	241.45	1.85	D-25958	0.362	0.58	315	16.75
							241.45	243.4	1.95	D-25959	0.498	0.83	412	20.6
							243.4	245.4	2	D-25960	0.564	1.31	578	42.2
							245.4	247.4	2	D-25961	0.481	1.37	428	60.2
							247.4	249.4	2	D-25962	0.587	0.86	522	32.4
							249.4	251	1.6	D-25963	0.833	2.54	671	17.8
							251	252.6	1.6	D-25965	0.784	1.82	631	24.4
							252.6	254	1.4	D-25967	0.763	1.99	682	19.9
							254	256.05	2.05	D-25968	0.964	2.2	602	23.2
							256.05	258.1	2.05	D-25969	3.48	14.8	1630	12.65
							258.1	260	1.9	D-25970	0.477	0.51	371	9.24
							260	262	2	D-25971	0.973	0.99	825	49.3
							262	264	2	D-25972	0.527	0.85	443	12.95
							264	266	2	D-25973	0.836	0.38	655	23.2
							266	268	2	D-25974	0.829	0.49	807	18.2
							268	270	2	D-25975	0.761	0.55	748	58.1
							270	272	2	D-25976	0.645	0.39	715	19.9
							272	274	2	D-25978	0.447	0.22	312	20.9
							274	276	2	D-25979	0.672	0.41	585	37.2
							276	278	2	D-25980	0.166	0.18	125.5	18.85
							278	280	2	D-25981	0.199	0.27	208	9.65
							280	282	2	D-25982	0.48	0.38	492	15.7
							282	284	2	D-25983	0.232	0.3	297	15.35

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							284	286	2	D-25985	0.208	0.29	225	19.05
							286	288	2	D-25986	0.261	0.25	224	9.77
							288	290	2	D-25988	0.579	0.38	441	17.5
							290	292	2	D-25989	0.685	0.53	429	61.9
							292	294	2	D-25990	0.792	0.42	491	17.9
							294	296	2	D-25991	0.579	0.51	454	18.4
							296	298	2	D-25992	0.376	0.29	289	11.9
							298	299.65	1.65	D-25993	1.2	0.88	1085	29.4
							299.65	301.3	1.65	D-25994	0.548	0.44	370	15.9
							301.3	302.65	1.35	D-25995	0.23	0.27	170	9.82
							302.65	304	1.35	D-25996	0.335	0.31	226	16.85
							304	305.6	1.6	D-25997	0.149	0.21	151.5	14.65
							305.6	307.6	2	D-25998	0.353	0.35	231	17.45
							307.6	309.6	2	D-26000	0.693	0.41	420	51.4
							309.6	311.6	2	D-26826	0.168	0.22	140.5	10.65
							311.6	313.6	2	D-26827	0.203	0.32	196.5	9.46
							313.6	315.3	1.7	D-26828	0.197	0.31	174	10.6
							315.3	317	1.7	D-26830	0.593	0.58	411	24.8
							317	318.9	1.9	D-26831	0.481	0.26	293	43
							318.9	320.9	2	D-26832	0.412	0.24	201	9.36
							320.9	322.9	2	D-26833	0.351	0.26	181	9.07
							322.9	324.9	2	D-26835	0.297	0.37	278	8.9
							324.9	326.9	2	D-26836	0.356	0.43	290	9.8
							326.9	328.45	1.55	D-26837	0.36	0.44	312	13.15
							328.45	330	1.55	D-26838	1.305	0.57	537	31.1
							330	332	2	D-26839	0.273	0.62	147.5	17.3
							332	333.65	1.65	D-26840	0.366	0.25	200	8.18
							333.65	335.4	1.75	D-26842	0.246	0.22	143	5.03
							335.4	336.85	1.45	D-26843	0.197	0.28	165	6.89
							336.85	339	2.15	D-26844	0.174	0.21	109	6.08
							339	340.1	1.1	D-26845	0.235	0.38	128.5	19.15

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							340.1	341.8	1.7	D-26846	0.212	0.25	105.5	6.32
							341.8	343.5	1.7	D-26847	0.466	0.37	186.5	22.1
							343.5	345.2	1.7	D-26848	0.445	0.59	199.5	11
							345.2	346.9	1.7	D-26850	0.205	0.22	84.5	18.25
							346.9	348.45	1.55	D-26851	0.226	0.19	93.5	25.6
							348.45	350	1.55	D-26852	0.586	3.04	207	14.4
TS_DH_02	423840	584369	1210	315	-55	400	16	19	3	D-28500	1.645	1.06	1050	2.9
							19	20.5	1.5	D-28501	1.42	0.99	1520	21.4
							20.5	22	1.5	D-28502	0.855	0.9	1000	42.3
							22	23.8	1.8	D-28503	0.243	0.64	475	18.7
							23.8	26	2.2	D-28504	0.44	0.82	447	21.4
							26	27.7	1.7	D-28506	0.436	0.76	478	18.65
							27.7	29.05	1.35	D-28507	0.534	0.57	671	22.1
							29.05	30.4	1.35	D-28508	0.679	0.78	717	32
							30.4	31.8	1.4	D-28509	0.728	0.51	577	47.7
							31.8	33.2	1.4	D-28510	0.931	0.65	856	15.6
							33.2	35.2	2	D-28511	0.771	0.96	740	41.8
							35.2	36.45	1.25	D-28512	0.623	0.66	423	20.9
							36.45	37.5	1.05	D-28513	1.155	0.97	1000	26.5
							37.5	39.15	1.65	D-28514	0.467	0.68	564	22.7
							39.15	40.45	1.3	D-28515	1.24	0.74	923	23.5
							40.45	42.2	1.75	D-28516	0.777	0.54	602	14.85
							42.2	43.9	1.7	D-28517	1.01	0.9	641	17.05
							43.9	45.6	1.7	D-28519	0.53	0.56	431	15.05
							45.6	47.35	1.75	D-28520	1.025	0.58	699	13.8
							47.35	48.75	1.4	D-28521	0.445	0.44	147	11.05
							48.75	50.25	1.5	D-28522	1.41	0.98	1150	62.5
							50.25	51.45	1.2	D-28523	2.16	1.4	1860	31.5
							51.45	52.65	1.2	D-28525	0.74	0.68	730	14.5
							52.65	53.9	1.25	D-28526	0.605	0.47	498	13.9
							53.9	55.6	1.7	D-28527	0.8	0.77	708	25.8

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							55.6	57.6	2	D-28528	1.765	0.78	1230	32.2
							57.6	59.5	1.9	D-28529	2.2	1.33	1280	27.4
							59.5	61.5	2	D-28531	0.701	0.52	484	23
							61.5	63.5	2	D-28532	1.32	0.58	524	53.3
							63.5	65.2	1.7	D-28533	0.339	0.38	302	28
							65.2	67.2	2	D-28534	1.73	0.71	1040	33.2
							67.2	69.2	2	D-28535	2.02	0.8	1330	20.9
							69.2	71.2	2	D-28536	1.385	0.65	991	21
							71.2	73.2	2	D-28537	1.365	0.74	1010	22.7
							73.2	75.2	2	D-28538	1.64	1.02	1220	25.3
							75.2	77.2	2	D-28539	1.895	0.7	1080	23.2
							77.2	79.2	2	D-28541	0.687	1.24	654	23.9
							79.2	81.2	2	D-28542	0.93	0.8	863	15.35
							81.2	83.2	2	D-28543	0.753	0.53	521	17.5
							83.2	85.2	2	D-28544	0.28	0.36	185.5	2.56
							85.2	87.2	2	D-28546	0.311	0.26	139.5	5.2
							87.2	88.3	1.1	D-28547	0.074	0.19	85.5	2.35
							88.3	90.3	2	D-28548	1.325	0.93	1180	23
							90.3	91.3	1	D-28550	0.855	0.98	725	23.4
							91.3	92.8	1.5	D-28551	0.88	0.55	642	28.6
							92.8	94.8	2	D-28552	1.31	1.06	1100	33.4
							94.8	96.8	2	D-28553	1.485	1.24	865	28.9
							96.8	98.3	1.5	D-28554	1.4	0.89	765	70.9
							98.3	99.15	0.85	D-28555	0.868	1.13	1010	22.6
							99.15	101.15	2	D-28556	1.75	1.42	788	24.3
							101.15	103.15	2	D-28557	1.035	0.83	583	12.9
							103.15	105.15	2	D-28559	1.02	0.93	523	23.8
							105.15	107.15	2	D-28560	0.706	0.59	321	18.6
							107.15	109.15	2	D-28561	0.515	0.49	381	21.4
							109.15	110.35	1.2	D-28562	1.085	0.66	556	20.1
							110.35	111.55	1.2	D-28563	0.985	0.62	552	20.5

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							111.55	113.1	1.55	D-28564	1.24	1.55	610	21.7
							113.1	114.6	1.5	D-28565	1.79	1.28	995	15.95
							114.6	115.2	0.6	D-28566	1.385	0.55	769	13.4
							115.2	116.4	1.2	D-28568	1.065	0.49	563	15.1
							116.4	117.5	1.1	D-28569	0.91	0.57	463	18.75
							117.5	118.65	1.15	D-28570	0.796	0.53	456	11.8
							118.65	119.2	0.55	D-28571	1.055	1.14	1350	49.9
							119.2	119.85	0.65	D-28573	1.25	1.24	2090	133.5
							119.85	121.85	2	D-28574	1.305	1.16	1105	40.4
							121.85	123.85	2	D-28575	0.997	1.17	822	37.7
							123.85	125.85	2	D-28576	1.1	1.92	1095	160
							125.85	127.85	2	D-28577	1.02	2.37	1155	29
							127.85	129.85	2	D-28578	0.939	1.5	641	58
							129.85	130.7	0.85	D-28579	0.962	0.82	555	87.2
							130.7	132.7	2	D-28580	1.155	0.72	785	52.7
							132.7	133.9	1.2	D-28581	1.01	0.86	762	81.5
							133.9	135.1	1.2	D-28583	1.935	0.92	1165	31.3
							135.1	136.25	1.15	D-28584	1.65	1.17	1195	55.5
							136.25	136.75	0.5	D-28585	1.07	0.37	758	21.7
							136.75	138.75	2	D-28586	3.93	0.92	1955	35
							138.75	140.75	2	D-28587	2.3	1.59	1520	17.75
							140.75	142.15	1.4	D-28588	0.929	0.48	1000	17.8
							142.15	143.75	1.6	D-28589	2.08	0.82	1190	25
							143.75	145.4	1.65	D-28590	2.03	0.79	840	28.2
							145.4	147.1	1.7	D-28591	1.43	0.83	1035	22.7
							147.1	148.25	1.15	D-28592	1.2	0.55	427	11.75
							148.25	150.25	2	D-28594	0.695	0.72	657	27.3
							150.25	152.25	2	D-28595	0.602	0.89	833	37.7
							152.25	154.25	2	D-28596	1.015	1.31	876	28.6
							154.25	155.15	0.9	D-28597	1.12	0.81	789	27.9
							155.15	157.15	2	D-28598	2.22	1.39	1695	38.1

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							157.15	159.15	2	D-28600	2.6	0.98	1070	20.9
							159.15	161.15	2	D-28601	1.42	1.02	1270	59.3
							161.15	163.15	2	D-28602	3.31	1.37	1970	70.6
							163.15	164.05	0.9	D-28603	2.45	0.61	1300	57.8
							164.05	166.05	2	D-28605	2.23	0.85	1300	65.5
							166.05	167.6	1.55	D-28606	1.19	0.65	827	69.2
							167.6	168.75	1.15	D-28607	1.23	0.94	1150	60.8
							168.75	170.15	1.4	D-28608	0.82	0.74	725	33.4
							170.15	171.55	1.4	D-28609	1.38	1.1	1190	47.4
							171.55	173	1.45	D-28610	2.3	2.19	1660	56.8
							173	173.8	0.8	D-28611	1.195	1.2	733	21.2
							173.8	175.85	2.05	D-28612	0.877	0.87	823	9.7
							175.85	177.9	2.05	D-28613	0.588	0.53	423	12.3
							177.9	179.8	1.9	D-28614	0.995	0.72	575	12.55
							179.8	181.5	1.7	D-28615	1.105	0.7	745	8.73
							181.5	182.5	1	D-28616	1.57	1.43	1440	1150
							182.5	184.5	2	D-28618	0.79	0.49	574	9.95
							184.5	186.5	2	D-28619	2.15	1.06	1410	22.6
							186.5	188.5	2	D-28620	0.972	0.79	969	193
							188.5	190.5	2	D-28621	1.605	2.66	2220	43.4
							190.5	192.2	1.7	D-28622	1.55	3.81	1620	13.95
							192.2	192.95	0.75	D-28623	0.804	0.7	677	28.8
							192.95	194.95	2	D-28624	1.355	0.77	749	8.75
							194.95	196.95	2	D-28625	1.155	0.45	896	7.82
							196.95	198.95	2	D-28626	1.115	0.7	758	6.96
							198.95	200.95	2	D-28628	0.701	0.59	506	5.65
							200.95	202.95	2	D-28629	1.055	0.76	661	8.42
							202.95	204.95	2	D-28630	0.833	0.83	656	6.36
							204.95	206.6	1.65	D-28631	0.934	0.76	706	22.2
							206.6	208.3	1.7	D-28632	1.285	0.82	841	9.77
							208.3	210	1.7	D-28633	1.14	0.66	676	18.6

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							210	211.1	1.1	D-28635	0.854	1.42	532	8.46
							211.1	212.95	1.85	D-28636	0.756	0.38	520	9.47
							212.95	214.9	1.95	D-28637	0.97	0.35	640	8.81
							214.9	216.9	2	D-28638	0.58	0.48	342	7.34
							216.9	218.9	2	D-28639	1.405	0.41	695	7.32
							218.9	220.9	2	D-28640	0.754	0.29	518	6.15
							220.9	222.9	2	D-28641	0.788	0.4	520	6.55
							222.9	224.9	2	D-28642	1.3	0.59	672	4.48
							224.9	226.9	2	D-28644	0.67	0.66	363	7.18
							226.9	228.9	2	D-28645	0.596	0.37	357	7.07
							228.9	230.9	2	D-28646	0.695	0.46	483	9.34
							230.9	232.9	2	D-28647	0.529	0.46	418	9.5
							232.9	234.9	2	D-28649	1.24	0.78	641	15.4
							234.9	236.9	2	D-28650	0.588	0.41	278	8.23
							236.9	238.9	2	D-28651	4.66	3.04	1620	13.05
							238.9	240.9	2	D-28653	1.145	0.31	465	11.5
							240.9	242.9	2	D-28654	0.636	0.34	330	12.4
							242.9	244.9	2	D-28655	1.115	0.52	458	15.15
							244.9	246.9	2	D-28656	0.524	0.57	415	12.4
							246.9	248.9	2	D-28657	0.529	0.42	255	4.11
							248.9	250.9	2	D-28658	0.071	0.11	31.5	0.96
							250.9	252.85	1.95	D-28659	0.169	0.3	111.5	4.44
							252.85	254.1	1.25	D-28660	0.329	0.23	92.9	5.63
							254.1	255.4	1.3	D-28661	0.691	0.37	214	5.33
							255.4	257.4	2	D-28662	0.731	0.64	386	12.25
							257.4	259.4	2	D-28663	0.316	0.31	244	8.99
							259.4	261.4	2	D-28664	0.441	0.4	320	10.3
							261.4	263.4	2	D-28666	0.465	0.6	310	49.4
							263.4	265.1	1.7	D-28667	0.188	0.42	144.5	15.9
							265.1	266.5	1.4	D-28668	0.996	6.84	409	39.2
							266.5	267.9	1.4	D-28669	0.322	0.26	225	9.99

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							267.9	269.35	1.45	D-28671	0.48	0.36	310	13.25
							269.35	271.35	2	D-28672	0.535	0.45	463	14.2
							271.35	273.35	2	D-28673	0.382	0.64	323	11.6
							273.35	275.35	2	D-28674	1.395	1.8	1070	14.9
							275.35	277.35	2	D-28676	0.636	0.69	502	16.65
							277.35	279.35	2	D-28677	1.19	0.88	1310	19.3
							279.35	281.35	2	D-28678	1.02	0.66	773	19.4
							281.35	283.35	2	D-28679	0.768	0.87	720	19.65
							283.35	285	1.65	D-28680	1	0.53	519	13.15
							285	285.5	0.5	D-28681	0.486	0.54	417	19.4
							285.5	287.5	2	D-28682	0.741	0.48	476	13.85
							287.5	289.5	2	D-28683	0.46	0.47	344	13.7
							289.5	291.5	2	D-28684	1.13	0.63	723	12.05
							291.5	293.5	2	D-28686	2.02	1.18	1080	12.4
							293.5	295.5	2	D-28687	1.51	0.92	1215	13.4
							295.5	297.5	2	D-28688	0.511	0.62	615	14.15
							297.5	299.4	1.9	D-28689	0.507	0.68	519	12.2
							299.4	300.5	1.1	D-28690	0.392	0.71	360	9.45
							300.5	301.6	1.1	D-28691	0.361	0.46	389	9.01
							301.6	303.6	2	D-28693	0.853	0.85	624	7.66
							303.6	305.6	2	D-28694	0.527	0.66	572	8.86
							305.6	307	1.4	D-28695	0.423	0.97	707	8.83
							307	308.4	1.4	D-28697	0.682	0.6	230	10.15
							308.4	309.75	1.35	D-28698	0.215	0.51	288	13.65
							309.75	311.75	2	D-28700	0.793	0.89	811	14.05
							311.75	313.75	2	D-28701	0.5	0.39	389	9.06
							313.75	315.75	2	D-28702	0.452	0.51	451	8.65
							315.75	317.75	2	D-28703	0.477	0.87	480	10.25
							317.75	319.75	2	D-28704	0.453	0.57	378	13.7
							319.75	321.7	1.95	D-28705	0.525	0.55	483	13.15
							321.7	323.2	1.5	D-28706	1.24	1.1	1290	13.95

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							323.2	325.2	2	D-28707	0.872	0.77	709	18.2
							325.2	327.2	2	D-28708	0.665	0.63	679	16.25
							327.2	329.2	2	D-28709	1.195	1.06	996	14.35
							329.2	331.2	2	D-28710	0.514	1.36	458	12.15
							331.2	333.2	2	D-28711	0.652	0.68	638	12.8
							333.2	335.2	2	D-28713	0.463	0.49	592	15.65
							335.2	337.2	2	D-28714	0.308	0.53	381	13.65
							337.2	338.7	1.5	D-28715	0.68	0.6	684	13.1
							338.7	340.2	1.5	D-28716	0.745	0.3	411	13.75
							340.2	341.8	1.6	D-28717	1.605	0.73	444	12.7
							341.8	343.1	1.3	D-28718	1.55	1.79	538	17.85
							343.1	344.5	1.4	D-28720	0.719	1.68	361	15
							344.5	346.5	2	D-28721	0.808	1.5	396	15.55
							346.5	348.5	2	D-28723	0.984	1.91	690	26.5
							348.5	350.5	2	D-28724	1.255	0.52	633	49.5
							350.5	352.5	2	D-28725	1.425	0.58	1070	31.9
							352.5	356.5	4	D-28726	0.609	0.35	588	30
							356.5	358.5	2	D-28727	1.08	0.54	1050	63.3
							358.5	360.5	2	D-28728	1.1	0.44	751	39.7
							360.5	362.5	2	D-28730	0.72	0.43	682	16.85
							362.5	364.5	2	D-28731	1.4	1.14	1420	139.5
							364.5	366.5	2	D-28732	0.811	0.85	988	54.8
							366.5	368.5	2	D-28733	0.52	0.95	961	41.8
							368.5	370.5	2	D-28734	1.25	0.93	1160	237
							370.5	372.5	2	D-28735	0.687	0.76	1080	81
							372.5	374.5	2	D-28736	0.621	0.53	550	78.3
							374.5	376.5	2	D-28737	0.932	0.8	973	131.5
							376.5	378.5	2	D-28738	0.504	0.57	842	46.7
							378.5	380.5	2	D-28740	1.125	0.83	1830	42.7
							380.5	382.5	2	D-28741	0.89	0.86	1440	70.6
							382.5	384.5	2	D-28742	1.04	1.25	2850	136.5

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Cu	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							384.5	386.5	2	D-28743	0.45	1.16	1420	55
							386.5	388	1.5	D-28744	0.538	1.87	3850	81.5
							388	389.45	1.45	D-28745	0.317	1.47	2370	74
							389.45	390.8	1.35	D-28746	0.486	1.47	3080	66.3
							390.8	391.5	0.7	D-28747	3.43	6.67	26320	311
							391.5	393.5	2	D-28749	0.219	0.79	598	22.2
							393.5	395.5	2	D-28750	0.164	1.91	1370	33.3
							395.5	396.8	1.3	D-28751	0.238	0.61	560	14.3
							396.8	398	1.2	D-28752	0.276	0.83	788	14.1
							398	400	2	D-28753	0.502	0.71	514	29
TS_DH_03	423745	584330	1234	315	-60	440.5	9.3	10.5	1.2	D-28779	0.494	0.89	536	1.89
							10.5	12.5	2	D-28780	0.331	0.41	247	4
							12.5	14.2	1.7	D-28781	0.192	0.26	166.5	5.99
							14.2	16.5	2.3	D-28782	0.508	0.46	355	16.9
							16.5	18.5	2	D-28783	0.424	0.4	292	13.5
							18.5	20.5	2	D-28784	0.457	0.62	395	212
							20.5	22.5	2	D-28785	0.208	0.42	195.5	11.75
							22.5	24.5	2	D-28786	0.147	0.21	88.9	7.03
							24.5	26.5	2	D-28787	0.889	0.95	667	37.4
							26.5	28.5	2	D-28788	0.823	0.72	519	45.5
							28.5	29.3	0.8	D-28789	0.589	0.6	374	37.9
							29.3	31.3	2	D-28790	0.47	0.41	353	34.3
							31.3	32.9	1.6	D-28791	0.606	0.46	434	467
							32.9	34.55	1.65	D-28792	0.403	0.46	374	52.7
							34.55	35.1	0.55	D-28794	0.481	0.61	140	215
							35.1	37.1	2	D-28795	0.648	0.35	380	42.5
							37.1	39.1	2	D-28796	0.36	0.42	294	21.3
							39.1	41.1	2	D-28798	2.32	1.02	1070	62.9
							41.1	43.1	2	D-28799	0.35	0.33	256	29.3
							43.1	45.1	2	D-28800	0.273	0.34	195.5	24.5
							45.1	47.1	2	D-28801	0.177	0.29	149.5	18.85

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Cu	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							47.1	49.1	2	D-28803	0.575	0.57	455	105
							49.1	51.1	2	D-28804	0.401	0.7	419	125
							51.1	53.1	2	D-28805	0.673	0.8	562	74
							53.1	54.6	1.5	D-28806	0.402	0.57	334	23.6
							54.6	55.2	0.6	D-28807	0.638	0.82	471	36.9
							55.2	57	1.8	D-28808	0.253	0.64	219	26.4
							57	58.8	1.8	D-28809	0.267	0.66	335	53.9
							58.8	60.7	1.9	D-28810	0.608	0.88	448	48.1
							60.7	61.75	1.05	D-28811	0.266	0.52	146.5	13.75
							61.75	62.85	1.1	D-28812	0.355	0.68	417	35.3
							62.85	64	1.15	D-28813	0.374	0.61	403	15.85
							64	64.7	0.7	D-28814	0.561	0.95	586	99.7
							64.7	66.7	2	D-28816	0.446	0.63	385	46.9
							66.7	68.7	2	D-28817	0.261	0.45	235	13.25
							68.7	70	1.3	D-28818	0.311	0.39	144.5	10.1
							70	72	2	D-28819	0.25	0.56	235	22.5
							72	74	2	D-28821	0.324	0.57	274	23.5
							74	76	2	D-28822	0.376	0.67	267	35
							76	78	2	D-28823	0.278	0.35	280	141.5
							78	80	2	D-28825	0.165	0.46	156	13.6
							80	81.4	1.4	D-28826	0.318	0.38	234	34.4
							81.4	82.8	1.4	D-28827	0.18	0.32	129.5	20.1
							82.8	84.3	1.5	D-28828	0.343	0.49	304	40.2
							84.3	84.8	0.5	D-28829	0.719	0.71	306	10.65
							84.8	85.9	1.1	D-28830	0.349	0.43	273	14.5
							85.9	87	1.1	D-28831	0.268	0.36	214	19.8
							87	89	2	D-28832	0.408	0.72	350	26.9
							89	91	2	D-28834	0.506	0.69	370	65.5
							91	93	2	D-28835	0.679	0.96	389	26.3
							93	95	2	D-28836	0.831	0.9	450	123.5
							95	97	2	D-28838	1.08	1.07	661	66.8

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Cu	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							97	99	2	D-28839	0.431	0.8	214	20.7
							99	101	2	D-28840	0.256	0.4	115	12.6
							101	103	2	D-28842	0.394	0.52	231	19.9
							103	105	2	D-28843	0.148	0.27	156	12.95
							105	106.5	1.5	D-28844	0.342	0.56	227	85.2
							106.5	108.5	2	D-28845	0.685	0.63	498	18.6
							108.5	110.5	2	D-28846	0.703	0.61	872	51.8
							110.5	112.5	2	D-28847	0.718	0.74	633	42.7
							112.5	114.5	2	D-28848	0.952	0.65	649	48.7
							114.5	116.5	2	D-28849	0.412	0.46	259	42.4
							116.5	118.5	2	D-28850	0.945	1.57	1030	146.5
							118.5	120.5	2	D-28852	0.611	0.98	497	24.3
							120.5	122.55	2.05	D-28853	0.299	0.66	224	28.9
							122.55	124.6	2.05	D-28854	0.171	0.35	280	19.95
							124.6	126.6	2	D-28856	0.26	0.37	271	19.7
							126.6	128.6	2	D-28857	0.332	0.36	369	60.3
							128.6	130.6	2	D-28858	0.471	0.48	560	139.5
							130.6	132.6	2	D-28860	0.519	0.49	633	105
							132.6	134.6	2	D-28861	0.569	0.51	678	140.5
							134.6	136.5	1.9	D-28862	0.408	0.33	527	114.5
							136.5	138.5	2	D-28863	0.404	0.38	389	29.9
							138.5	140.5	2	D-28864	0.393	0.35	444	74.8
							140.5	142	1.5	D-28865	1.17	0.73	521	58
							142	143.5	1.5	D-28866	0.591	0.3	724	1540
							143.5	145	1.5	D-28868	0.577	0.34	577	984
							145	147	2	D-28869	0.271	0.41	398	44.4
							147	148.7	1.7	D-28870	0.382	0.25	451	53.4
							148.7	150.7	2	D-28871	0.278	0.29	377	155
							150.7	152.7	2	D-28873	0.589	0.56	831	177.5
							152.7	153.9	1.2	D-28874	0.54	0.53	520	173
							153.9	155.1	1.2	D-28875	0.726	0.66	1230	252

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							155.1	157.1	2	D-28876	0.509	0.35	766	89.2
							157.1	159.1	2	D-28877	0.657	0.36	859	64
							159.1	161.1	2	D-28878	0.465	0.42	683	76.4
							161.1	163.1	2	D-28879	0.497	0.56	891	97.7
							163.1	165.1	2	D-28880	0.452	0.64	734	52.5
							165.1	167.1	2	D-28881	0.37	0.47	586	56.5
							167.1	169.1	2	D-28882	0.292	0.44	440	103
							169.1	171.1	2	D-28883	0.49	0.56	678	275
							171.1	173.1	2	D-28884	0.998	1.19	1190	211
							173.1	174.75	1.65	D-28886	0.676	0.87	814	76.8
							174.75	176.7	1.95	D-28887	0.502	0.92	586	67.5
							176.7	178.7	2	D-28888	0.715	1.04	874	92.1
							178.7	180.7	2	D-28889	0.893	1.67	887	80.9
							180.7	182.2	1.5	D-28891	0.87	1.43	880	149.5
							182.2	183.7	1.5	D-28892	0.452	0.6	644	58.4
							183.7	185.7	2	D-28893	0.573	0.97	715	53.3
							185.7	187.7	2	D-28894	0.573	0.92	739	92.2
							187.7	189.7	2	D-28895	0.35	0.55	531	42.2
							189.7	191.7	2	D-28896	0.439	0.6	662	48.6
							191.7	193.7	2	D-28898	0.829	0.92	1200	125.5
							193.7	195.2	1.5	D-28899	0.41	0.76	667	61.2
							195.2	196.65	1.45	D-28900	0.87	0.74	802	90.9
							196.65	197.9	1.25	D-28901	0.429	0.71	446	85.9
							197.9	199.1	1.2	D-28902	1.05	1	1020	119
							199.1	201.1	2	D-28904	1.26	0.76	1240	317
							201.1	203.1	2	D-28905	1.14	0.84	1240	201
							203.1	204.85	1.75	D-28906	1.195	1.07	1220	304
							204.85	206.7	1.85	D-28907	0.451	0.51	571	89.9
							206.7	207.7	1	D-28908	0.346	0.59	482	58.2
							207.7	209.7	2	D-28909	0.426	0.39	528	71.1
							209.7	211.7	2	D-28910	0.552	0.7	773	102

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							211.7	213.7	2	D-28912	0.603	0.71	822	92.7
							213.7	215.6	1.9	D-28913	0.85	0.92	1020	142
							215.6	217.6	2	D-28914	0.48	0.91	661	70.2
							217.6	219.6	2	D-28915	0.504	0.92	811	84.1
							219.6	221.6	2	D-28916	0.384	1.1	1130	95.3
							221.6	223.6	2	D-28918	0.511	1.17	741	112
							223.6	225.6	2	D-28919	0.505	1.21	884	118.5
							225.6	227.7	2.1	D-28920	0.483	0.83	824	100.5
							227.7	229.1	1.4	D-28921	0.516	1.18	808	147.5
							229.1	230.5	1.4	D-28922	0.442	1.33	900	122
							230.5	231.9	1.4	D-28923	0.349	1.02	706	98.1
							231.9	233.5	1.6	D-28924	0.631	1.17	864	117.5
							233.5	235.1	1.6	D-28925	0.355	0.77	661	69.4
							235.1	237.1	2	D-28926	0.182	0.5	242	34.6
							237.1	239.1	2	D-28928	0.138	0.35	17.2	8.28
							239.1	241.1	2	D-28929	0.527	1	58.2	4.34
							241.1	243.1	2	D-28930	0.081	0.18	18.2	1.15
							243.1	245.1	2	D-28932	0.27	0.36	28.5	2.78
							245.1	247.1	2	D-28933	0.7	0.82	151.5	23.1
							247.1	249.1	2	D-28934	0.476	0.79	207	18.75
							249.1	251.1	2	D-28936	0.308	0.59	158.5	14.05
							251.1	253.1	2	D-28937	0.411	1.01	636	37.3
							253.1	255.1	2	D-28938	0.648	1.05	731	102.5
							255.1	256.95	1.85	D-28939	0.898	1.18	629	119.5
							256.95	258.9	1.95	D-28940	0.306	0.84	468	63.6
							258.9	260.9	2	D-28941	0.334	1.01	498	147.5
							260.9	262.2	1.3	D-28942	0.243	0.63	374	64.2
							262.2	263.5	1.3	D-28943	0.46	1.42	694	51.8
							263.5	264.2	0.7	D-28944	0.35	0.78	467	66
							264.2	266.2	2	D-28945	0.041	0.3	32.8	1.92
							266.2	268.2	2	D-28946	0.088	0.32	47.4	4.48

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							268.2	270.2	2	D-28948	0.123	0.42	45.7	6.32
							270.2	272.2	2	D-28949	0.163	0.22	65.2	10.9
							272.2	274.2	2	D-28950	0.164	0.46	99.2	31.4
							274.2	276.2	2	D-28952	0.2	0.74	105.5	21.9
							276.2	278.2	2	D-28953	0.193	0.39	158	24.1
							278.2	280.2	2	D-28955	0.186	0.46	158.5	9.14
							280.2	282.2	2	D-28956	0.038	0.17	39.5	6.48
							282.2	284.2	2	D-28957	0.01	0.05	8.7	4.34
							284.2	286.2	2	D-28958	0.067	0.37	53.7	5.56
							286.2	288.2	2	D-28959	0.173	0.36	126.5	6
							288.2	290.2	2	D-28960	0.142	0.45	146	5.76
							290.2	292.2	2	D-28961	0.142	0.45	71.7	6.9
							292.2	294.2	2	D-28962	0.119	0.53	62.2	2.59
							294.2	296.05	1.85	D-28963	0.142	0.46	184	7.16
							296.05	297.45	1.4	D-28964	0.561	0.67	695	32.6
							297.45	299.3	1.85	D-28966	1.24	1.08	1420	97.1
							299.3	301.3	2	D-28967	0.625	0.73	732	60.5
							301.3	303.3	2	D-28968	0.294	0.42	337	45
							303.3	305.3	2	D-28969	0.466	0.67	413	34
							305.3	307.3	2	D-28970	0.271	0.52	114	6.62
							307.3	309.3	2	D-28971	0.107	0.13	54.5	3.73
							309.3	311.3	2	D-28973	0.318	0.17	123	3.44
							311.3	313.2	1.9	D-28974	0.201	0.1	65.6	2.47
							313.2	315.2	2	D-28975	0.204	0.11	92	2.89
							315.2	317.2	2	D-28976	0.168	0.09	71.9	2.73
							317.2	319.2	2	D-28977	0.631	0.19	207	7.93
							319.2	321.2	2	D-28978	0.192	0.09	73.3	3.67
							321.2	323.2	2	D-28979	0.192	0.17	85.3	6.17
							323.2	325.2	2	D-28980	0.165	0.12	74.4	3.68
							325.2	327.2	2	D-28981	0.24	0.13	120	8.42
							327.2	329.2	2	D-28982	0.424	0.21	127.5	9.18
	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
---------	---------	----------	-----	--------------	-------------	------------	--------	--------	----------	---------	-------	-------	-------	-------
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							329.2	331.2	2	D-28983	0.312	0.17	184.5	9.05
							331.2	333.2	2	D-28984	0.399	0.16	170.5	8.18
							333.2	335.2	2	D-28985	0.187	0.15	103.5	6.56
							335.2	337.2	2	D-28986	3.47	0.61	438	10.15
							337.2	339.2	2	D-28988	0.992	0.23	323	19.2
							339.2	341.2	2	D-28989	0.98	0.34	418	12.65
							341.2	343.2	2	D-28991	0.6	0.3	283	12.8
							343.2	345.2	2	D-28992	0.255	0.17	133.5	5.95
							345.2	347.2	2	D-28993	0.076	0.11	57	4.57
							347.2	349.2	2	D-28994	0.098	0.26	69.8	6.87
							349.2	351.2	2	D-28995	0.148	0.36	93.9	6.36
							351.2	353.2	2	D-28996	0.185	1.05	195	6.02
							353.2	355.2	2	D-28998	0.131	0.64	127	11.8
							355.2	356.8	1.6	D-28999	0.463	0.42	312	16.7
							356.8	358.05	1.25	D-27001	0.57	1.06	550	24.7
							358.05	360	1.95	D-27002	0.126	0.93	124	8.85
							360	362	2	D-27003	0.083	0.17	60.3	4.21
							362	364	2	D-27005	0.11	0.57	85.3	8.18
							364	366	2	D-27006	0.119	0.48	100.5	11.45
							366	368	2	D-27007	0.096	0.21	83.9	10
							368	370	2	D-27008	0.091	0.2	77.1	17.9
							370	372	2	D-27009	0.22	0.77	135	15.05
							372	373.4	1.4	D-27010	0.099	0.25	71.5	9.07
							373.4	374.8	1.4	D-27011	0.073	0.12	65.6	5.87
							374.8	376.15	1.35	D-27012	0.066	0.1	71.2	5.58
							376.15	377.95	1.8	D-27013	0.114	1.45	78	12
							377.95	379.75	1.8	D-27014	0.171	2.4	155	24.5
							379.75	381.55	1.8	D-27015	0.156	0.24	112.5	14.85
							381.55	383.55	2	D-27016	0.282	0.4	122.5	13.3
							383.55	385.55	2	D-27017	0.08	0.11	46.2	2.33
							385.55	387.55	2	D-27019	0.106	0.11	46.4	5.25

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							387.55	389.55	2	D-27020	0.398	0.21	46.7	4.07
							389.55	391.55	2	D-27021	0.289	0.18	94.8	6.36
							391.55	393.55	2	D-27022	0.184	0.23	43.3	3.23
							393.55	394.95	1.4	D-27023	0.071	0.17	1850	5.43
							394.95	396.35	1.4	D-27025	0.13	0.61	102	15.1
							396.35	398.3	1.95	D-27026	0.129	1.32	63.6	9.93
							398.3	400.3	2	D-27027	0.11	0.14	45.5	3.26
							400.3	402.3	2	D-27028	0.062	0.14	39.1	2.15
							402.3	404.3	2	D-27029	0.13	0.25	105	8.88
							404.3	406.3	2	D-27030	0.044	0.16	42.1	2.41
							406.3	408.3	2	D-27031	0.072	0.37	63.1	4.09
							408.3	410.3	2	D-27032	0.092	0.37	93.9	27.6
							410.3	412.3	2	D-27033	0.015	0.12	26.4	0.45
							412.3	414.3	2	D-27035	0.019	0.17	42	1.01
							414.3	416.3	2	D-27036	0.103	0.54	68.4	1.37
							416.3	418.3	2	D-27037	0.023	0.13	27.1	1
							418.3	419.5	1.2	D-27038	0.028	0.12	16.5	0.92
							419.5	421.5	2	D-27039	0.115	0.29	37.9	3.87
							421.5	423.5	2	D-27041	0.114	0.17	66	4.15
							423.5	425.5	2	D-27042	0.127	0.54	101.5	9.04
							425.5	427.5	2	D-27043	0.258	0.43	192	2.72
							427.5	429.5	2	D-27044	0.081	0.17	35.9	4.24
							429.5	431.5	2	D-27046	0.129	0.4	255	9.32
							431.5	433.4	1.9	D-27047	0.259	1.54	60.7	4.41
							433.4	434.85	1.45	D-27048	0.026	0.24	30	0.6
							434.85	436.3	1.45	D-27049	0.052	0.86	15.5	0.87
							436.3	437.7	1.4	D-27050	0.013	0.25	16.8	0.38
							437.7	439.2	1.5	D-27051	0.038	0.28	20.9	0.8
							439.2	440.5	1.3	D-27052	0.053	0.56	31.8	0.9
TS_DH_04	423840	584369	1210	321	-70	400	0	3	3	D-28001	0.135	0.141	191	7.44
							3	6	3	D-28002	1.115	0.419	518	14.75

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							6	8.8	2.8	D-28003	0.771	0.47	657	6.28
							8.8	10.8	2	D-28004	1.28	0.446	770	6.75
							10.8	12.8	2	D-28005	0.557	0.419	569	2.63
							12.8	14.8	2	D-28006	0.91	1.57	605	4.35
							14.8	16.8	2	D-28007	0.935	1.34	884	15.95
							16.8	18.8	2	D-28008	0.932	1.01	843	35
							18.8	20.8	2	D-28009	2.14	1.59	1395	51.3
							20.8	22.8	2	D-28010	0.746	1.13	695	45.1
							22.8	24.8	2	D-28012	1.005	1.185	937	54.1
							24.8	26.8	2	D-28013	0.386	0.653	494	27.3
							26.8	28.8	2	D-28014	0.383	0.486	433	42.1
							28.8	30.8	2	D-28015	0.848	0.975	642	35.6
							30.8	32.8	2	D-28017	0.538	0.558	556	38
							32.8	34.8	2	D-28018	1.015	0.693	711	48.8
							34.8	36.8	2	D-28019	1.1	1	806	49.7
							36.8	38.8	2	D-28020	0.744	0.863	647	93
							38.8	40.8	2	D-28022	0.632	0.753	568	21.1
							40.8	42.8	2	D-28023	1.54	1.295	981	47.8
							42.8	44.8	2	D-28024	1.965	0.94	1160	44.5
							44.8	46.8	2	D-28025	1.485	1.055	1025	49.1
							46.8	48.8	2	D-28026	2.11	1.725	1325	89
							48.8	50.8	2	D-28027	1.125	0.953	841	101.5
							50.8	52.8	2	D-28028	0.745	0.667	690	47.1
							52.8	54.8	2	D-28029	0.365	0.686	604	21.9
							54.8	56.8	2	D-28030	0.641	0.822	588	75.3
							56.8	58.8	2	D-28032	0.661	0.83	607	75.2
							58.8	60.8	2	D-28033	0.97	0.646	773	40.4
							60.8	62.8	2	D-28034	0.46	0.471	420	43.4
							62.8	64.8	2	D-28035	0.7	0.726	667	182
							64.8	66.8	2	D-28037	0.785	0.967	761	39.7
							66.8	68.8	2	D-28038	0.629	0.836	550	108

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Cu	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							68.8	70.8	2	D-28039	0.408	0.607	403	27.8
							70.8	72.8	2	D-28040	0.507	1.845	547	27.9
							72.8	74.8	2	D-28042	0.68	1.155	626	41.4
							74.8	76.8	2	D-28043	1.25	1.46	1235	81.1
							76.8	78.8	2	D-28044	0.847	1.26	800	93.1
							78.8	80.8	2	D-28045	0.7	0.853	611	57.1
							80.8	82.8	2	D-28046	0.71	0.966	682	203
							82.8	84.8	2	D-28047	0.819	0.954	613	26.3
							84.8	86.8	2	D-28048	0.44	0.735	448	36.7
							86.8	88.8	2	D-28049	0.926	1.07	968	64.6
							88.8	90.8	2	D-28050	0.708	1.59	1725	65.8
							90.8	92.8	2	D-28052	1.05	1.615	1535	104
							92.8	94.8	2	D-28053	0.901	1.595	1335	105.5
							94.8	96.8	2	D-28054	1.515	2.3	1815	154.5
							96.8	98.8	2	D-28055	0.876	2.15	949	41.8
							98.8	100.8	2	D-28057	0.731	1.62	1240	28.1
							100.8	102.8	2	D-28058	0.773	1.02	1150	74.6
							102.8	104.8	2	D-28059	0.685	0.907	862	58.1
							104.8	106.8	2	D-28060	0.677	0.975	537	81.3
							106.8	108.8	2	D-28062	0.563	0.829	478	29.5
							108.8	110.8	2	D-28063	0.055	0.218	76	1.39
							110.8	112.8	2	D-28064	0.71	0.381	322	5.15
							112.8	114.8	2	D-28065	0.763	0.717	426	7.3
							114.8	116.8	2	D-28066	0.704	0.445	352	6.44
							116.8	118.8	2	D-28067	0.23	0.275	129	3.13
							118.8	120.8	2	D-28068	0.415	0.398	323	5.76
							120.8	122.8	2	D-28069	0.13	0.273	169	4.65
							122.8	124.8	2	D-28070	0.549	0.413	425	12.05
							124.8	126.8	2	D-28072	0.195	0.359	381	8.05
							126.8	128.8	2	D-28073	0.555	0.733	517	9.69
							128.8	130.8	2	D-28074	0.928	1.19	778	26.9

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							130.8	132.8	2	D-28075	0.592	0.787	520	10.5
							132.8	134.8	2	D-28077	0.141	0.637	128.5	3.67
							134.8	136.8	2	D-28078	0.75	1.15	605	11.7
							136.8	138.8	2	D-28079	1.07	2.05	811	19.15
							138.8	140.8	2	D-28080	0.558	1.17	458	8.69
							140.8	142.8	2	D-28082	0.487	0.619	274	5
							142.8	144.8	2	D-28083	0.22	0.236	160.5	4.69
							144.8	146.8	2	D-28084	0.263	0.308	216	4.95
							146.8	148.8	2	D-28085	0.267	0.49	216	6.23
							148.8	150.8	2	D-28086	0.191	0.51	256	6.49
							150.8	152.8	2	D-28087	0.116	0.445	203	4.55
							152.8	154.8	2	D-28088	0.121	0.366	198.5	4.61
							154.8	156.8	2	D-28089	0.259	0.596	284	8.02
							156.8	158.8	2	D-28090	0.27	0.72	428	6.34
							158.8	160.8	2	D-28092	0.323	0.722	456	9.19
							160.8	162.8	2	D-28093	0.384	0.558	409	7.1
							162.8	164.8	2	D-28094	0.607	0.829	542	8.53
							164.8	166.8	2	D-28095	0.473	0.459	365	5.75
							166.8	168.8	2	D-28097	0.727	0.629	392	6.71
							168.8	170.8	2	D-28098	1.095	0.618	463	6.99
							170.8	172.8	2	D-28099	0.289	0.648	441	10.15
							172.8	174.8	2	D-28100	0.389	0.72	565	15
							174.8	176.8	2	D-28102	0.376	0.978	536	9.72
							176.8	178.8	2	D-28103	0.234	3.84	428	9.93
							178.8	180.8	2	D-28104	0.421	1.205	647	11.7
							180.8	182.8	2	D-28105	0.419	1.315	768	11.25
							182.8	184.8	2	D-28106	0.086	0.202	114.5	0.49
							184.8	186.8	2	D-28107	0.085	0.228	98.8	2.22
							186.8	188.8	2	D-28108	0.075	0.182	94.5	2.77
							188.8	190.8	2	D-28109	0.11	0.222	58.2	0.91
							190.8	192.8	2	D-28110	0.11	0.202	100	0.88

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							192.8	194.8	2	D-28112	0.137	0.16	64.4	0.5
							194.8	196.8	2	D-28113	0.187	0.28	153	1.14
							196.8	198.8	2	D-28114	0.141	0.207	115.5	0.66
							198.8	200.8	2	D-28115	0.082	0.177	92.5	0.36
							200.8	202.8	2	D-28117	0.062	0.128	63.9	0.56
							202.8	204.62	1.82	D-28118	0.018	0.063	7.36	1.96
							204.62	206	1.38	D-28119	0.029	0.053	13.25	3.34
							206	207.1	1.1	D-28120	0.015	0.137	15.75	1.98
							207.1	209.5	2.4	D-28122	0.0025	0.097	8.53	1.77
							209.5	211	1.5	D-28123	0.042	0.321	15.45	3.92
							211	211.74	0.74	D-28124	0.0025	0.234	8.7	0.91
							211.74	215	3.26	D-28125	0.01	0.174	14.75	2.21
							215	217.05	2.05	D-28126	0.035	0.166	8.36	1.82
							217.05	219.05	2	D-28128	0.0025	0.112	8.46	1.12
							219.05	221.05	2	D-28129	0.0025	0.098	9.21	1.32
							221.05	223	1.95	D-28130	0.006	0.384	10	1.1
							223	224.9	1.9	D-28132	0.0025	0.19	8.88	1.16
							224.9	226.7	1.8	D-28133	0.006	0.29	9.27	0.75
							226.7	228.7	2	D-28134	0.0025	0.463	8.82	1.43
							228.7	230.4	1.7	D-28135	0.0025	0.357	8.01	2.71
							230.4	232.2	1.8	D-28137	0.0025	0.383	8.34	0.41
							232.2	234.2	2	D-28138	0.0025	0.234	7.71	0.38
							234.2	235.9	1.7	D-28139	0.025	0.334	7.49	0.51
							235.9	238	2.1	D-28140	0.0025	0.183	7.59	0.45
							238	240	2	D-28142	0.005	0.271	7.9	0.2
							240	242	2	D-28143	0.006	0.292	7.33	0.16
							242	244	2	D-28144	0.0025	0.253	7.38	0.21
							244	246	2	D-28145	0.005	0.224	7.52	0.19
							246	248	2	D-28146	0.0025	0.226	7.73	0.16
							248	250	2	D-28147	0.0025	0.179	7.46	0.15
							250	252	2	D-28148	0.119	2.83	7.27	0.82

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							252	254	2	D-28149	0.238	3.27	7.36	4.65
							254	255.8	1.8	D-28150	0.048	0.599	7.23	1.13
							255.8	257.7	1.9	D-28152	0.32	5.76	7.56	1.52
							257.7	259.6	1.9	D-28153	0.252	3.73	7.29	0.48
							259.6	261.6	2	D-28154	0.0025	0.087	8.32	1.1
							261.6	263.5	1.9	D-28155	0.0025	0.117	8.27	1.18
							263.5	265.5	2	D-28157	0.0025	0.093	8.43	1.24
							265.5	267.6	2.1	D-28158	0.0025	0.064	8.24	1.04
							267.6	269.6	2	D-28159	0.0025	0.132	8.35	1.14
							269.6	271.6	2	D-28160	0.0025	0.079	8.43	1.06
							271.6	273.6	2	D-28162	0.0025	0.117	8.12	1.06
							273.6	275.6	2	D-28163	0.006	0.122	8.04	1.05
							275.6	277.6	2	D-28164	0.0025	0.105	7.99	1.04
							277.6	279.6	2	D-28165	0.0025	0.069	8.4	1.1
							279.6	281.6	2	D-28166	0.0025	0.084	8.36	1.34
							281.6	283.6	2	D-28167	0.0025	0.073	8.2	1.2
							283.6	285.8	2.2	D-28168	0.0025	0.092	8.1	1.28
							285.8	287.8	2	D-28169	0.009	0.458	7.31	1.34
							287.8	289.7	1.9	D-28170	0.0025	0.697	7.39	0.55
							289.7	291.7	2	D-28172	0.0025	0.52	7.37	0.34
							291.7	293.7	2	D-28173	0.0025	0.097	8.4	1.18
							293.7	295.7	2	D-28174	0.0025	0.078	8.41	1.46
							295.7	297.7	2	D-28175	0.008	0.348	7.26	0.51
							297.7	299.6	1.9	D-28177	0.0025	0.53	7.07	0.22
							299.6	301.6	2	D-28178	0.0025	0.768	7.13	0.27
							301.6	303.3	1.7	D-28179	0.018	0.487	6.68	0.29
							303.3	305.6	2.3	D-28180	0.0025	0.327	7.24	0.19
							305.6	307.5	1.9	D-28182	0.0025	0.294	7.36	0.16
							307.5	309.5	2	D-28183	0.0025	0.388	7.53	0.18
							309.5	311.5	2	D-28184	0.0025	0.344	7.34	0.14
							311.5	313.5	2	D-28185	0.0025	0.334	7.45	0.22

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							313.5	315.5	2	D-28186	0.0025	0.292	7.28	0.16
							315.5	317.7	2.2	D-28187	0.0025	0.157	7.05	0.21
							317.7	319.75	2.05	D-28188	0.009	0.231	7.1	0.19
							319.75	321.9	2.15	D-28189	0.017	0.282	6.81	0.25
							321.9	324.03	2.13	D-28190	0.0025	0.187	7.22	0.16
							324.03	326.14	2.11	D-28192	0.005	0.232	7.19	0.18
							326.14	328.2	2.06	D-28193	0.0025	0.285	7.29	0.24
							328.2	330.28	2.08	D-28194	0.0025	0.17	7.4	0.17
							330.28	332.47	2.19	D-28195	0.0025	0.328	7.46	1.19
							332.47	334.5	2.03	D-28197	0.0025	0.227	7.31	0.33
							334.5	336.55	2.05	D-28198	0.0025	0.166	7.42	0.34
							336.55	338.5	1.95	D-28199	0.0025	0.117	7.52	0.3
							338.5	340.61	2.11	D-28200	0.0025	0.3	7.56	0.25
							340.61	342.68	2.07	D-28202	0.022	1.21	7.24	0.2
							342.68	344.79	2.11	D-28203	0.326	17.95	7.11	1.03
							344.79	346.8	2.01	D-28204	0.0025	0.266	7.24	0.23
							346.8	348.93	2.13	D-28205	0.0025	0.399	7.4	0.35
							348.93	350.94	2.01	D-28206	0.0025	0.232	7.48	0.23
TS_DH_05	423815	584526	1235	306	-55	390	1.7	4.67	2.97	D-28208	0.567	0.199	385	9.07
							4.67	9.5	4.83	D-28209	0.922	0.214	393	34.2
							9.5	8.68	-0.82	D-28210	1.24	0.244	367	33.3
							8.68	11.2	2.52	D-28211	1.795	0.836	713	11.65
							11.2	14.3	3.1	D-28212	0.835	0.267	1300	15.2
							14.3	16.16	1.86	D-28213	0.744	0.204	658	28.8
							16.16	19.9	3.74	D-28214	0.809	0.322	600	10.4
							19.9	24.25	4.35	D-28215	0.41	0.418	693	14.8
							24.25	26.85	2.6	D-28216	0.387	0.395	453	3.51
							26.85	28.85	2	D-28218	0.836	0.594	1005	39.9
							28.85	30.55	1.7	D-28219	0.617	2.26	1455	16
							30.55	33.25	2.7	D-28220	0.362	1.565	606	113.5
							33.25	35.2	1.95	D-28221	0.736	0.914	638	102

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Cu	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							35.2	37.05	1.85	D-28223	0.237	0.658	368	201
							37.05	39.9	2.85	D-28224	0.102	0.338	189	7.36
							39.9	41.95	2.05	D-28225	0.149	0.85	689	12.7
							41.95	44.05	2.1	D-28226	0.172	0.402	202	16.4
							44.05	46	1.95	D-28228	0.218	0.376	199	37.9
							46	47.6	1.6	D-28229	0.212	0.299	246	51.6
							47.6	49.5	1.9	D-28230	0.26	0.292	272	36.5
							49.5	51.3	1.8	D-28231	0.169	0.538	294	30
							51.3	53.2	1.9	D-28232	0.303	0.516	316	12.5
							53.2	54.76	1.56	D-28233	0.354	0.32	368	42.2
							54.76	56.8	2.04	D-28234	0.923	0.95	1050	59
							56.8	58.66	1.86	D-28235	0.247	0.371	378	37.5
							58.66	60.27	1.61	D-28236	0.292	0.359	400	73.3
							60.27	63.3	3.03	D-28237	0.362	0.495	401	21.1
							63.3	65.74	2.44	D-28239	0.136	0.469	323	23.1
							65.74	67.5	1.76	D-28240	0.338	0.425	444	50.2
							67.5	69.8	2.3	D-28241	0.185	0.272	278	23.7
							69.8	71.35	1.55	D-28243	0.289	0.377	439	28.3
							71.35	73.3	1.95	D-28244	0.37	0.373	504	23.8
							73.3	75.25	1.95	D-28245	0.387	0.553	681	32
							75.25	77.2	1.95	D-28246	0.321	0.713	606	25.4
							77.2	79.1	1.9	D-28248	0.472	0.501	555	78.9
							79.1	81	1.9	D-28249	0.305	0.391	403	49.1
							81	82.9	1.9	D-28250	0.262	0.381	414	42.5
							82.9	84.9	2	D-28251	0.148	0.369	259	52.7
							84.9	86.8	1.9	D-28252	0.128	0.383	250	126
							86.8	88.8	2	D-28253	0.259	0.303	343	46.6
							88.8	90.73	1.93	D-28254	0.312	0.447	519	35.6
							90.73	92.68	1.95	D-28255	0.229	0.296	348	34.9
							92.68	94.5	1.82	D-28256	0.35	0.34	358	18.3
							94.5	96.26	1.76	D-28258	0.629	0.32	393	16.05

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							96.26	98.36	2.1	D-28259	0.167	0.205	211	10.5
							98.36	100.47	2.11	D-28260	0.436	0.347	367	19.9
							100.47	102.44	1.97	D-28261	0.294	0.317	290	18.65
							102.44	104.5	2.06	D-28263	0.174	0.197	221	12.1
							104.5	106.56	2.06	D-28264	0.318	0.489	487	25.2
							106.56	108.5	1.94	D-28265	0.277	0.754	633	23.2
							108.5	110.55	2.05	D-28266	0.25	0.549	507	152.5
							110.55	112.6	2.05	D-28268	0.354	1.28	1220	492
							112.6	114.6	2	D-28269	0.559	0.854	708	178.5
							114.6	116.6	2	D-28270	0.982	0.995	797	48.6
							116.6	118.68	2.08	D-28271	0.664	0.594	480	30.9
							118.68	120.6	1.92	D-28272	0.56	0.746	525	48.4
							120.6	122.8	2.2	D-28273	0.524	1.125	974	83.5
							122.8	124.75	1.95	D-28274	0.312	0.411	383	41
							124.75	126.02	1.27	D-28275	0.489	0.727	293	27
							126.02	128.1	2.08	D-28276	0.711	1.075	740	67.8
							128.1	130.1	2	D-28278	0.269	0.758	347	65.6
							130.1	132.1	2	D-28279	0.326	0.672	230	14.55
							132.1	134.2	2.1	D-28280	0.303	1.605	713	100.5
							134.2	136.34	2.14	D-28281	0.287	0.722	591	35.5
							136.34	138.34	2	D-28283	0.411	0.83	570	42.8
							138.34	140.34	2	D-28284	0.302	1.57	755	121
							140.34	142.47	2.13	D-28285	0.151	0.852	440	23.5
							142.47	144.35	1.88	D-28286	0.194	3.25	1550	50.1
							144.35	146.5	2.15	D-28288	0.264	1.07	925	58.1
							146.5	148.45	1.95	D-28289	0.323	0.786	888	38.7
							148.45	150.4	1.95	D-28290	0.328	0.607	563	16
							150.4	152.5	2.1	D-28291	0.211	0.488	450	15.65
							152.5	154.56	2.06	D-28292	0.213	0.435	420	17.3
							154.56	156.55	1.99	D-28293	0.186	0.551	418	10.3
							156.55	158.62	2.07	D-28294	0.327	0.877	818	48.2

	Easting	Northing	RL	Azimuth	Declination	Hole Depth	From	То	Interval	Sample	Au	Ag	Си	Мо
HOLE ID	(m)	(m)	(m)	(degrees TN)	(degrees)	(m)	(m)	(m)	(m)	No	(ppm)	(ppm)	(ppm)	(ppm)
							158.62	160.45	1.83	D-28295	0.157	0.704	615	522
							160.45	162.6	2.15	D-28296	0.156	0.528	510	51.7
							162.6	164.7	2.1	D-28298	0.144	0.688	660	6.13
							164.7	166.72	2.02	D-28299	0.344	0.905	815	17.25
							166.72	168.8	2.08	D-28300	0.114	0.271	196.5	4.19
							168.8	170.9	2.1	D-28301	0.074	0.466	259	7.69
							170.9	172.9	2	D-28303	0.07	0.473	219	14.45
							172.9	175	2.1	D-28304	0.203	0.593	358	15.6
							175	177	2	D-28305	0.107	0.475	299	198.5
							177	179	2	D-28306	0.171	0.358	280	83.8
							179	181	2	D-28308	0.586	0.984	764	48.5
							181	183	2	D-28309	0.585	0.836	531	61.5
							183	185.15	2.15	D-28310	0.366	0.558	354	17
							185.15	187.2	2.05	D-28311	0.826	1.07	556	49.5
							187.2	189.3	2.1	D-28312	0.176	0.607	331	13
							189.3	191.46	2.16	D-28313	0.267	0.709	427	5.61
							191.46	193.5	2.04	D-28314	0.243	1.065	416	11.25
							193.5	195.5	2	D-28315	0.085	0.415	188.5	3.35
							195.5	197.55	2.05	D-28316	0.168	0.899	390	3.6
							197.55	199.7	2.15	D-28318	0.275	1.105	407	12.05
							199.7	202.13	2.43	D-28319	0.238	0.739	174.5	32.4
							202.13	204.2	2.07	D-28320	0.56	1.19	392	10.85
							204.2	205.6	1.4	D-28321	0.451	0.854	452	11.3
							205.6	207.67	2.07	D-28323	0.196	0.79	379	47.4
							207.67	209.6	1.93	D-28324	0.262	0.784	458	12.65
							209.6	211.8	2.2	D-28325	0.361	1.12	565	12.3
							211.8	213.74	1.94	D-28326	0.701	4.71	1790	22.7
							213.74	215.75	2.01	D-28328	0.799	2.96	998	64.9
							215.75	390	174.25	1 5				
TS_DH_06	423740	584706	1275	306	-55	350	0	350	350	1 3 ,				
TS_DH_07	423815	584526	1235	234	-70				in p	rogress				

Appendix E

Cross-sections to accompany Summary Exploration Results Plan (Figure 2)

Basalt (Barroso Formation - Cretaceous)

Porphyritic sub-volcanic intrusive complex (Miocene)

Arkose (Amaga Formation - Tertiary)

Coloured contour lines - IP chargeability from 20 mV/V (blue) to 47.5 mV/V (red)

Metres

Basalt (Barroso Formation - Cretaceous)

Porphyritic sub-volcanic intrusive complex (Miocene)

Arkose (Amaga Formation - Tertiary)

Coloured contour lines - IP chargeability from 20 mV/V (blue) to 45 mV/V (orange)

Appendix F GLOSSARY

Terms and abbreviations:

Ag	Chemical symbol for silver
Alteration	Changes in the chemical or mineralogical composition of a rock, generally produced by weathering or hydrothermal solutions.
Andesite	Andesite is an extrusive rock intermediate in composition between rhyolite and basalt.
	Andesite lava is of moderate viscosity and forms thick lava flows and domes Andesite is the volcanic equivalent of diorite.
.Basalt	Basalt is a mafic extrusive rock, is the most widespread of all igneous rocks, and comprises more than 90% of all volcanic rocks.
Breccia	Breccia is a rock classification, comprises millimetre to metre-scale rock fragments cemented together in a matrix.
Chalcopyrite	The mineral sulphide of iron and copper, CuFeS2; sometimes called copper pyrite or yellow copper ore.
Chargeability	Chargeability is a physical property related to conductivity. Chargeability is used to characterise the induced polarisation within a rock, under the influence of an electric field, suggesting sulphide mineralisation at depth.
Chlorite	Chlorite is a group of common sheet silicate minerals that form in the early stages of metamorphism.
Cu	Chemical symbol for copper
Dacite	Dacite is a felsic extrusive rock, intermediate in composition between andesite and rhyolite. It is often found associated with andesite, and forms lava flows, dikes, and, in some cases, massive intrusions in the centres of old volcanoes. Dacite is the volcanic equivalent of granodiorite.
Diorite	Is an intrusive rock intermediate in composition between gabbro and granite, produced in volcanic arcs. Diorite is the plutonic equivalent of andesite.
Granodiorite	Granodiorite is an intrusive rock, intermediate between diorite and granite.
Induced Polarisation	Induced polarisation (IP) is a geophysical survey used to identify the electrical chargeability of subsurface materials, such as sulphides.

- Phyllic alteration Hydrothermal alteration typically resulting from removal of sodium, calcium, and magnesium from calc-alkalic igneous rocks, with pervasive hydrous replacement of most silicates, (e.g. K-feldspar to sericite), usually destroying the original rock texture and it may form a schistose texture. It is a common style of alteration in porphyry base-metal systems around a central, higher temperature zone of potassic alteration.
 Plagioclase Plagioclase is a series of tectosilicate minerals within the feldspar group
 Porphyry Igneous rock containing conspicuous phenocrysts (crystals) in fine-grained or glassy groundmass
- Porphyry vein types A-type veins are formed early and derived from a magmatic fluid and provide very saline fluid inclusions; M-type veins are A veins rich in magnetite; B-type veins overprint A and M veins in the staged porphyry paragenetic sequence, are characterised by central sulphide-bearing bands within quartz; C-type veins are categorised as sulphide veins dominated by mixtures of pyrite-chalcopyrite + bornite, and represent a means to transport the sulphides which fill the centre of B veins and many M and locally A veins. They therefore overprint A, M and B veins ; D-type veins form in the late stages of porphyry development and may extend some distance outside the porphyry into the overlying host rocks. These veins are dominated by pyrite.
- Potassic alteration Potassic alteration is characterised by the presence of secondary K-feldspar and/or biotite as replacement, fracture/veins and selvages to quartz veins, in conjunction with silica and sulphides such as pyrite, chalcopyrite and bornite.
- Propylitic alteration Propylitic alteration is the chemical alteration of minerals within a rock, caused by hydrothermal fluids. This style of alteration typically results in epidote-chlorite+-albite alteration and veining or fracture filling, commonly altering biotite or amphibole minerals within the rock groundmass, typically along with pyrite.

Pyrite Mineral of iron and sulphur, iron sulphide, chemical symbol FeS2

Quartz Mineral composed of silicon dioxide.

W Chemical symbol for tungsten

Zn Chemical symbol for zinc