

ASX Announcement, 20 January 2020

Final drill assays for Chuscal. Underlying gold porphyry targets identified

Highlights:

- Fourth diamond hole (CHDDH004) intercepts modelled veins of horsetail structure and broad background porphyry associated gold mineralisation
- Results include 8m @ 1.65g/t Au from 8m below surface including 2m @ 3.86g/t Au from 8m ¹
- Maiden drilling program materially revised and upgraded pre-drilling geological model
- **2020** exploration program to commence with follow up drilling at Chuscal, the completion of a district scale 3D geological and structural study of the Chuscal, Tesorito, Miraflores and Dosquebradas porphyry/epithermal systems
- Preliminary assessment of porphyry metal vectors indicates two targets as potential cores of porphyry systems beneath Chuscal drill holes

Metminco Limited (ASX: MNC), soon to be renamed Los Cerros Limited, is pleased to advise that it has received the final tranche of assays for the 2019 Chuscal drilling program which consisted of four diamond holes (Table 1, Appendix 1), and represents the first drilling to occur at the Chuscal Prospect.

Chuscal is a gold porphyry and vein target within the Quinchia Project which also hosts the Tesorito Prospect and the established Ore Reserve at Miraflores, all within a 2km radius (Figure 1).

The final hole (CHDDH004) of the 4 hole Chuscal program was designed to complete the first pass testing along the core of the 900m strike of the Chuscal gold in soil anomaly and to demonstrate continuity of regional gold bearing structures by testing the 500m interval between holes CHDDH002 and CHDDH003, both of which encountered porphyry associated gold and vein hosted gold. Drill hole CHDDH004 intercepted regions of vein gold at depths predicted in the regional structural model, adding weight to the validity of the model for the distribution of epithermal vein related gold and silver. The best result was encountered near surface and correlated to the Guayacanes corridor (Figures 2 & 3) which hosts a series of horsetail faults containing old artisanal workings.

\circ 8m @ 1.65g/t Au from 8m below surface including 2m @ 3.86g/t Au from 8m

CHDDH004 also encountered extensive lower grade porphyry associated gold throughout, with assays frequently reporting grades of around 0.3g/t gold and occasionally higher (Appendix 1).

Metminco's Managing Director, Jason Stirbinskis commented; "In the context of a maiden drilling program into a large porphyry/epithermal system, the results from CHDDH004 in conjunction with results from the other three holes (CHDDH001 350m @ 0.57g/t Au plus 8m @ 2.82g/t Au and 29.96g/t Ag, CHDDH002 320m @ 0.43g/t Au plus 0.5m @ 17.1g/t Au, CHDDH003 0.4m @ 31.8g/t Au)² are significant and pleasing."

¹ Using a 0.5 g/t Au lower cut-off. All widths quoted are intercept widths, not true widths, as there is insufficient information at this stage of exploration to know the geometries within the system.

² See announcements 25 Nov 2019, 5 Dec 2019, 23 Dec 2019 respectively. The Company confirms that it is not aware of any new information that affects the information contained in this announcement.

Figure 1: The Quinchia Project consists of numerous discoveries within a 3km radius.

Figure 2: Plan view of Chuscal geology, interpreted mineralised corridors, horsetail structure and drill hole locations.

Figure 3: Cross section heading ~NNW showing CHDDH004. Note: Other than results for CHDDH004, results for holes CHDDH001-003 have been previously announced.

NEXT STEPS

Chuscal has been of great interest to its various previous owners for several decades including recently when held by AngloGold Ashanti. The prospect sits within a porphyry cluster (dominantly controlled by Metminco) within a very prospective region of the mid-Cauca porphyry belt and is defined by a significant surface gold geochemical anomaly. The possibility of a material discovery is considered high.

Metminco was the first company to secure permissions to drill Chuscal and the recently completed maiden drilling program has dramatically increased the understanding of the target and, as new data is assimilated into regional models, the structural story will continue to evolve over coming months.

Material developments include:

- Porphyry-associated gold is far more widespread than previously assumed, as evidenced by the moderate to very long drill core intercepts of lower grade gold over a strike of ~500m
- Overprinting by Intermediate Sulphidation System (ISS) epithermal veins is far more extensive than previously modelled; is associated with a regional fault structure (horsetail) of 500m strike which remains open to the NW and SE and at depth; and occurred late in the geological sequence as veins can been seen to cut most rock units including breccias
- The Guyacanes Diorite is not the porphyry source (as previously assumed), but rather just one of many units containing porphyry associated mineralisation, suggesting a much larger regional system with the deeper causative intrusive(s) (porphyry) occurring relatively later.

Mr Stirbinskis summarised; "Now that we have all the assay data, we will further test our hypotheses by conducting more detailed analysis of the geochemistry, including pathfinder ratios, to vector in on where all this porphyry associated gold might be coming from. We can also return to the oriented drill core armed with the geochemistry and extract critical information about vein sets, pulses and structures that will hopefully tell us what to look for to hit the high grade veins that have been the driver of artisanal miners for generations. This is a big, complex system!"

The Company's Geologists, supported by very experienced consultants, Dr Steve Garwin and Dr Roric Smith are currently consolidating the extensive regional data and new information to formulate the 2020 exploration plan and immediate next steps.

Preliminary observations that will contribute to future drill hole targeting is the developing argument that Chuscal has been subject to 6 episodes/stages of mineralisation with significant gold mineralisation associated with two stages. A period associated with the formation of porphyry type textures and mineral suite called Stage 2 appears to correlate with high background gold grades. Stage 6, the last of the episodes, correlates with the higher-grade gold associated with epithermal veins of carbonates and base metals (CBM).

Mr Stirbinskis added "We are interested in better understanding the controls to high grade gold mined by artisinals and CBM veining which is the primary vein style carrying high grade gold at Continental Gold's Buritica project located to our north and at other projects within the Mid-Cauca belt. Developing an understanding of stages associated with gold mineralisation and development of a 3-D geological model of Chuscal will contribute to better future targeting.

It is also our understanding that geochemical profiling, of which the above is an example, has not been applied to Miraflores or Tesorito by previous explorers and developing a better understanding of gold distribution within these deposits will be part of the early 2020 program".

Another line of investigation gaining traction is the application of numerous pathfinder and ratio signatures to vector in on the causative porphyry or porphyries that are the primary source of mineralisation at Chuscal. The following early stage observations are developing an argument for two target zones in the immediate vicinity.

- Molybdenum (Mo) concentration tends to increase towards the mineralised core of a porphyry system. It has been noted across the recent drillholes that Mo values increase towards two different environments in the Guyacanes area, south of the top of CHDDH002; and for the Corporacion area, south of the bottom of CHDDH003. Likewise, higher ratios of Mo/Mn (manganese) and yttrium/thorium (Y/Th) occur closer to porphyries/intrusives and vector to a region south of the top of CHDDH002 (Figures 4a and 4b).
- 2. Tellurium (Te) is also associated with substantial porphyry centres and at Chuscal has a similar vector orientation to the above while the relative abundance of background copper values compared to gold increasing downhole suggests a porphyry is possible below the sites of the 2019 drill program (Figure 5a and 5b).

Mr Stirbinskis added "Interestingly, we have started conducting similar assessments at the regional scale and have noted a number of areas and potential extensions at Tesorito, Santa Sofia and Miraflores that warrant further investigation".

The Company is formulating the follow-up drill program and will provide updates as insights and plans emerge.

Figures 4a and 4b: The distribution of Y/Th and of Mo/Mn in drill core and surface results identifies two target zones worthy of follow up for potential porphyry sources. Fig 4b background: Magnetic susceptibility at 1000msl. Note: Mo_Mn_1000 is a ratio calculated by dividing Mo grade by 1000xMn grade to generate a ratio of manageable scale.

Figures 5a and 5b: The distribution of Te and Au/Cu in drill core and surface results identifies two target zones worthy of follow up for potential porphyry sources. Fig 5b background: Magnetic susceptibility at 1000msl

Figures 4 and 5 reveal examples of several high temperature vectors and hydrothermal pathfinders pointing to the S and SW of drillholes CHDDH003 and CHDDH002, where two magnetic anomalies appear at 1100 masl (blue circle) and around 1000 masl or about 300m below surface (red circle) respectively and might be related to potential porphyry sources.

Hole	Easting	Northing	RL (m)	Azimuth	Dip	EOH
CHDDH001	423456	582685	1310	060º	-60º	452m
CHDDH002	423564	582609	1260	345 ⁰	-60º	412m
CHDDH003	423425	583071	1226	216º	-50º	302m
CHDDH004	423501	582760	1355	340º	-60º	370m

Table 1: Chuscal drillhole information.

For the purpose of ASX Listing Rule 15.5, the Board has authorised for this announcement to be released.

For further enquiries contact:

Jason Stirbinskis Managing Director Metminco Limited

jstirbinskis@metminco.com.au

APPENDIX 1: Gold assay results CHDDH004

HOLE ID	SAMPLE	FROM TO						Zn ppm
CHDDH004	D-29964	0	2	0.06	0.36	14.75	16.1	73.
CHDDH004	D-29965	2	4	0.08	0.31	8.96	19.4	84.
CHDDH004	D-29966	4	6	0.04	0.21	11.2	18.4	77.8
CHDDH004	D-29967	6	8	0.18	0.21	18.25	24.3	76.
CHDDH004	D-29968	8	10	3.86	0.35	177	27.8	29.2
CHDDH004	D-29969	10	12	1.19	0.30	254	37.4	32.4
CHDDH004	D-29970	12	14	0.62	0.33	305	32	30
CHDDH004	D-29971	14	16	0.94	0.81	289	40.6	41.2
CHDDH004	D-29972	16	18	0.38	0.82	286	37.4	44.
CHDDH004	D-29973	18	20	0.31	1.06	177.5	31.3	4
CHDDH004	D-29974	20	22	0.15	0.69	95.2	28.2	44.
CHDDH004	D-29975	22	24	0.05	0.37	36.1	28	40
CHDDH004	D-29976	24	26	0.07	0.39	47.4	29.6	44.8
CHDDH004	D-29977	26	28	0.06	0.39	52.7	29.8	43.
CHDDH004	D-29978	28	30	0.21	0.56	107	23.6	37.
CHDDH004	D-29979	30	32	0.16	0.47	115	27.9	45.
CHDDH004	D-29980	32	34	0.13	0.42	80.1	27.5	4
CHDDH004	D-29981	34	36	0.13	0.42	93.8	26.9	41.
CHDDH004 CHDDH004	D-29981 D-29982	36	38	0.12	0.40	95.8 137.5	20.9	41.
CHDDH004 CHDDH004	D-29983 D-29984	38 40	40 42	0.14 0.43	0.29 0.48	74.3 134	28.9 28	45. 48.
CHDDH004	D-29985	42	44	0.57	0.49	212	32.8	69.
CHDDH004	D-29986	44	46	0.27	1.06	232	37.6	60.
CHDDH004	D-29987	46	48	0.22	0.93	181.5	24.5	46.
CHDDH004	D-29988	48	50	0.14	0.62	130	20.8	57.
CHDDH004	D-29989	50	52	1.06	0.50	108.5	21.7	47.
CHDDH004	D-29990	52	54	0.21	0.73	130	26.8	60.
CHDDH004	D-29991	54	56	0.05	0.24	33.5	31.5	131.
CHDDH004	D-29992	56	58	0.06	0.34	51.2	33.1	6
CHDDH004	D-29993	58	60	0.23	0.46	167	26.5	58.
CHDDH004	D-29994	60	62	0.15	0.36	122	28.9	48.
CHDDH004	D-29995	62	64	0.3	0.49	191.5	28.3	47.
CHDDH004	D-29996	64	65	0.18	0.27	98.9	14.8	25.
CHDDH004	D-29997	65	66	0.35	0.24	67.5	10.45	
CHDDH004	D-29998	66	67	0.79	0.38	220	22.8	4
CHDDH004	D-29999	67	68	0.16	0.28	58.4	28	
CHDDH004	D-30000	68	69	0.10	0.28	45.2	59.7	-40.
CHDDH004	D-30001	69	70	0.12	5.48	70.4	325	15
CHDDH004 CHDDH004	D-30001	70	70	0.12	0.38	70.4 52.1	20.9	57.
CHDDH004	D-30003	71	72	0.22	0.27	78.9	25.9	52.
CHDDH004	D-30004	72	74	0.18	0.32	85	29.5	
CHDDH004	D-30006	74	76	0.38	0.51	266	31.4	
CHDDH004	D-30007	76	78	0.29	0.45	201	32.8	
CHDDH004	D-30008	78	80	0.41	1.42	108	98.8	22
CHDDH004	D-30009	80	81	0.06	0.28	32.9	31.8	12
CHDDH004	D-30010	81	82	0.25	1.53	26.8	123.5	23
CHDDH004	D-30011	82	83	0.17	0.86	73.4	33.9	10
CHDDH004	D-30012	83	84	0.13	1.30	33.7	512	39
CHDDH004	D-30013	84	85	0.05	0.23	26.5	28	51.
CHDDH004	D-30014	85	86	0.08	0.28	51.8	40.2	42.
CHDDH004	D-30015	86	87	0.18	1.91	50.7	165	55
CHDDH004	D-30016	87	88	0.07	0.27	35.5	27	39.
CHDDH004	D-30017	88	90	0.41	0.40	215	27.6	41.
CHDDH004 CHDDH004	D-30017 D-30018	90	90	0.41	0.40	213	27.0	41.
CHDDH004	D-30019	92	94	0.21	0.28	164	28.1	40.
CHDDH004	D-30020	94	96	0.37	0.32	198.5	28	38.
CHDDH004	D-30022	96	97	0.48	0.47	290	30.6	44.
CHDDH004	D-30023	97	98	0.09	0.25	74.4	30	3
CHDDH004	D-30024	98	99	0.2	0.32	154.5	29.3	37.
CHDDH004	D-30025	99	100	0.15	0.23	116	27.8	48.
CHDDH004	D-30027	100	101	0.06	0.25	59.2	28.3	47.
CHDDH004	D-30028	101	102	0.15	0.27	68.1	22.3	37.

HOLE ID	SAMPLE	FROM	то	Au g/t	Ag g/t	Cu ppm	Pb ppm	Zn ppm
CHDDH004	D-30028	101	102	0.15	0.27	68.1	22.3	37.9
CHDDH004	D-30029	102	104	0.18	0.29	124	30.7	43.9
CHDDH004	D-30030	104	106	0.28	0.64	190.5	33.6	52.4
CHDDH004	D-30031	106	107	0.25	1.25	63.8	43.2	45.4
CHDDH004	D-30032	107	108	0.1	0.28	45.9	23.3	40.2
CHDDH004	D-30033	108	110	0.1	0.29	45.6	19.75	40.9
CHDDH004	D-30034	110	111	0.1	0.19	27.7	25.7	42.6
CHDDH004	D-30035	111	112	0.1	0.55	50.2	40.7	52.7
CHDDH004	D-30036	112	113	0.23	13.05	174.5	118.5	57.5
CHDDH004	D-30037	113	114	0.25	0.37	170	27.9	48.4
CHDDH004	D-30038	114	116	0.22	0.37	149.5	26.5	46
CHDDH004	D-30039	116	118	0.16	0.31	127.5	27.9	42.1
CHDDH004	D-30041	118	120	0.44	0.59	448	25.9	42.5
CHDDH004	D-30042	120	122	0.67	0.74	403	28.4	45.1
CHDDH004	D-30042	120	124	1.3	0.90	981	20.4	45.4
CHDDH004	D-30043	124	124	0.31	0.28	220	27.2	46.1
CHDDH004	D-30045	124	120	1.05	0.20	665	26.3	47.1
CHDDH004	D-30046 D-30047	128	130	0.38	0.27	121.5	26.2	41.2
CHDDH004		130	132	0.52	0.30	130	25.7	41.6
CHDDH004 CHDDH004	D-30048 D-30049	132	134 136	0.14 0.29	0.25	45.1 181	28.7 30.7	44.6
		134			0.49			42.7
CHDDH004	D-30050	136	138	0.2	0.42	219	29.9	47.1
CHDDH004	D-30051	138	140	0.08	0.23	77.8	30.4	42.6
CHDDH004	D-30052	140	142	0.18	0.38	103.5	30.1	50
CHDDH004	D-30053	142	144	0.43	0.45	302	30.5	44.6
CHDDH004	D-30054	144	145	0.56	0.60	314	22.8	37.4
CHDDH004	D-30056	145	146	0.06	0.19	39.3	21.4	40.9
CHDDH004	D-30057	146		0.06	0.26	57.8	23.3	45.3
CHDDH004	D-30058	147	148	0.18	1.40	119.5	58	66
CHDDH004	D-30060	148		0.18	0.30	132	30.4	46
CHDDH004	D-30061	150	152	0.2	0.37	183.5	20	32.5
CHDDH004	D-30062	152		0.11	0.24	92	30.7	40
CHDDH004	D-30063	154	156	0.08	0.27	74.5	32.3	42.2
CHDDH004	D-30064	156		0.13	0.28	126	33.3	41.2
CHDDH004	D-30065	157		0.17	0.22	106.5	33.9	37
CHDDH004	D-30066	158		0.08	0.25	91.2	29.7	41.7
CHDDH004	D-30067	159		0.05	0.19	40.7	30	42
CHDDH004	D-30068	160		0.08	0.24	72.5	30.6	40.9
CHDDH004	D-30069	161	162	0.11	0.38	107	22.3	39.8
CHDDH004	D-30070	162		0.16	0.32	148.5		42.3
CHDDH004	D-30071	163		0.16	0.30	109		
CHDDH004	D-30072	164		0.5	0.20	33.9		49.3
CHDDH004	D-30073	165			0.37	37.7		47.4
CHDDH004	D-30074	166		0.03	0.18	32.8	28.6	43.9
CHDDH004	D-30075	167	168	0.06	0.20	51.6	29.1	35.7
CHDDH004	D-30076	168	169	0.03	0.11	16.75	20.1	30.5
CHDDH004	D-30077	169	170	0.08	0.19	58.4	24.3	40.1
CHDDH004	D-30078	170	172	0.12	0.22	125.5	23.9	40.9
CHDDH004	D-30079	172	174	0.32	0.35	218	28.5	43.5
CHDDH004	D-30080	174	176	0.11	0.20	92.2	24.5	42.6
CHDDH004	D-30081	176	178	0.53	0.40	296	28.6	46.4
CHDDH004	D-30082	178	180	0.22	0.25	126.5	26	40.5
CHDDH004	D-30083	180	182	0.18	0.21	108.5	31.4	45.5
CHDDH004	D-30084	182	184	0.05	0.16	48.6	35.3	47.5
CHDDH004	D-30085	184	186	0.04	0.13	28.3	30.3	40.3
CHDDH004	D-30086	186	188	0.04	0.15	51.8	36.4	46.8
CHDDH004	D-30087	188	190	0.06	0.17	44.5	31.9	47
CHDDH004	D-30088	190	192	0.06	0.16	44.1	34.3	49.6
CHDDH004	D-30089	192	194	0.07	0.24	76	33.4	49.2
CHDDH004	D-30090	194	196	0.06	0.21	60.5	33.1	43.3
CHDDH004	D-30091	196		0.07	0.17	34.3	34.6	42.5
CHDDH004	D-30092	198		0.25	0.23	76.8		36

CHDDH004

D-30158

286

288

0.09

0.28

CHOPHO04 D-30034 199.8 201 0.12 0.25 107 34.1 47.4 47.4 47.4 CHDDH004 D-30095 202 201 0.12 0.25 107 34.1 40.0 CHDDH004 D-30095 202 204 0.13 0.23 109 30.4 38. CHDDH004 D-30098 206 202 0.25 110.5 32 39.9 CHDDH004 D-30010 210 0.26 0.25 110.5 32 39.9 CHDDH004 D-30100 210 122 0.25 0.25 10.3 30.6 39.3 CHDDH004 D-30102 214 215.1 0.49 0.47 723 26.4 31.1 CHDDH004 D-30105 217 218 0.13 0.18 85.8 10.1 32.5 CHDDH004 D-30107 219 202 0.22 0.25 166 11.25 35.3 CHDDH004 <tdd-< th=""><th>HOLE ID</th><th>SAMPLE</th><th>FROM</th><th>то</th><th>Au g/t</th><th>Ag g/t</th><th>Cu ppm</th><th>Pb ppm</th><th>Zn ppm</th></tdd-<>	HOLE ID	SAMPLE	FROM	то	Au g/t	Ag g/t	Cu ppm	Pb ppm	Zn ppm
CHDPH004 D-30095 201 202 0.1 0.22 0.0 0.1 0.23 64.6 29.5 0.3 CHDDH004 D-30097 204 206 0.12 0.13 0.23 1.09 30.4 38.3 CHDDH004 D-30099 206 206 0.12 0.12 1.02 3.2 39.3 CHDDH004 D-30099 208 210 0.26 0.25 103 30.6 39.9 CHDDH004 D-30101 212 214 0.39 0.80 255 2.7.2 40.0 CHDDH004 D-30103 215.1 116 0.09 0.15 67.5 9.29 30.0 CHDDH004 D-30105 217 218 0.13 0.18 8.8 1.1 32. CHDDH004 D-30105 217 218 0.013 2.8.5 34.4 CHDDH004 D-30101 222.1 0.02 0.25 32.5 34.4 CHDDH004 D									47.3
CHDDH004 D.30095 201 0.2 0.1 0.21 64.6 29.5 39.3 CHDDH004 D.30097 204 206 0.12 0.13 0.22 122.5 27 33.3 CHDDH004 D.30099 208 208 0.15 0.22 10.5 32.3 39.3 CHDDH004 D.30010 210 212 0.25 0.25 10.3 30.6 39.3 CHDDH004 D.30101 211 214 0.39 0.40 77 27.3 26.4 31.1 CHDDH004 D.30104 215 217 0.16 0.24 151.5 7.19 29.3 CHDDH004 D.30105 217 218 0.13 0.18 85.8 10.1 32.5 CHDDH004 D.30107 219 220 0.22 0.21 0.27 25.8 25.5 34.3 CHDDH004 D.30112 224 20.0 0.13 47.3 30.9 39.3									
CHODH004 D.30096 202 204 0.12 0.23 109 30.4 38. CHDDH004 D.30097 204 206 0.12 0.12 0.22 32.7 33. CHDDH004 D.30009 208 210 0.26 0.25 110.5 32.3 39.9 CHDDH004 D.30101 212 212 0.25 103 30.6 39.9 CHDDH004 D.30102 212 214 0.39 0.80 C55 27.2 40.0 CHDDH004 D.30103 215.1 216 0.09 0.15 67.5 9.29 30.0 CHDDH004 D.30106 218 217 0.16 0.88 88 10.3 22.5 22.6 0.07 166 11.3 38.3 CHDDH004 D.30101 22.2 22.1 0.2 0.2 7.3 39.9 39.9 CHDDH004 D.30110 22.2 22.2 0.13 0.13 43.3 30.1									
CHDPH004 D-30097 204 206 0.12 0.12 0.12 122.5 2.7 33. CHDDH004 D-30099 206 208 0.15 0.22 122.5 2.7 33. CHDDH004 D-30100 210 212 0.25 0.25 103 30.6 39.9 CHDDH004 D-30102 214 215.1 0.49 0.47 27.3 26.4 31.1 CHDDH004 D-30103 215.1 216 0.04 0.15 67.5 9.29 90.0 CHDDH004 D-30106 217 218 0.13 0.18 85.8 10.1 32. CHDDH004 D-30107 219 202 0.22 0.25 166 11.25 33.6 CHDDH004 D-30109 221.5 222 0.12 0.27 258 25.5 34.4 CHDDH004 D-30110 222 224 0.07 0.13 47.3 30.9 39.9 CH									
CHODH004 D-30098 206 208 210 0.26 0.22 112.5 27 33 CHODH004 D-30100 210 212 0.25 1.03 30.6 39.9 CHDDH004 D-30101 212 212 0.25 1.03 30.6 39.9 CHDDH004 D-30103 215.1 214 0.08 0.75 57.9 29 30.0 CHDDH004 D-30105 217 218 0.015 6.75 9.29 30.0 CHDDH004 D-30105 217 218 0.013 0.18 85.8 10.1 32.5 CHDDH004 D-30107 212.5 222 0.02 0.25 166 1.12 35.5 34.4 CHDDH004 D-30113 222 221.0 0.02 0.13 47.3 30.9 39.9 CHDDH004 D-30113 224 220 0.03 0.09 14.5 32.7 33 CHDDH004 D-30113 <									
CHODH004 D-30100 210 212 0.25 10.5 32 39.3 CHDDH004 D-30101 212 0.21 0.25 0.25 10.3 30.6 39.3 CHDDH004 D-30101 212 214 0.39 0.80 0.255 10.3 30.6 CHDDH004 D-30102 214 11.5 0.48 0.47 27.3 26.4 31.3 CHDDH004 D-30106 217 218 0.13 0.48 85.8 10.1 32.7 CHDDH004 D-30107 219 220 0.22 0.22 10.6 0.83 785 22.5 36.6 CHDDH004 D-30109 22.12 0.02 0.27 22.8 2.55 34.4 CHDDH004 D-30112 22.4 0.09 0.13 47.3 30.9 39.3 CHDDH004 D-30113 226 226 0.07 0.16 68.6 28.7 33.3 CHDDH004 D-30113									
CHODH004 0-30100 210 212 0.025 0.25 103 30.6 393. CHDDH004 D-30102 212 214 0.03 0.080 225 27.2 40.0 CHDDH004 D-30103 215.1 216 0.04 0.15 67.5 9.29 300.0 CHDDH004 D-30105 217 218 0.013 0.018 85.8 10.1 327.0 CHDDH004 D-30106 218 219 0.02 0.22 0.12 355. 344.0 CHDDH004 D-30108 220 0.22 0.13 28.9 11.7 383.0 CHDDH004 D-30110 222 224 0.009 0.19 148.5 235.3 344.0 CHDDH004 D-30112 224 226 0.07 0.13 435.3 30.1 344.5 CHDDH004 D-30114 228 230 0.03 0.09 25.5 324.4 34.0 CHDDH004 D-301									
CHODH004 D-30101 212 214 20.3 0.80 225 27.2 40.0 CHDDH004 D-30103 215.1 216 0.09 0.17 27.3 26.4 313. CHDDH004 D-30103 215.1 216 0.09 0.15 67.5 9.29 300. CHDDH004 D-30106 217 218 0.13 0.18 88.8 10.1 325. CHDDH004 D-30106 218 219 0.02 0.22 0.25 166 11.25 35. CHDDH004 D-30108 220 221.5 0.00 0.13 148.5 36. CHDDH004 D-30112 224 226 0.07 0.13 44.3 30.9 393. CHDDH004 D-30114 228 230 1.04 0.38 19.1 31.5 41.4 CHDDH004 D-30114 228 230 1.03 0.13 43.5 30.1 34.4 50.1 34.5									
CHODH004 D-30102 214 115. 10.49 0.47 273 26.4 31.1 CHDDH004 D-30103 215.1 216 217 0.16 0.24 151.5 9.79 303 CHDDH004 D-30105 217 218 0.06 0.28 7.99 0.66 0.83 785 25.6 333 CHDDH004 D-30107 219 220 0.022 0.05 166 11.25 353 CHDDH004 D-30108 220 221.5 0.00 0.13 47.3 30.9 393 CHDDH004 D-30113 226 228 0.07 0.13 47.3 30.9 393 CHDDH004 D-30114 228 230 0.03 0.09 25.5 3.7 33 CHDDH004 D-30116 232 233 0.02 0.29 56.1 29.4 31.1 CHDDH004 D-30112 240 242 0.05 0.33 118 35.2									
CHDDH004 D-30103 215.1 216 0.09 0.15 67.5 9.29 30.3 CHDDH004 D-30105 217 218 0.13 0.18 85.8 10.1 32.2 CHDDH004 D-30106 218 219 0.66 0.83 785 25.6 33.3 CHDDH004 D-30107 219 220 0.22 0.25 616 11.15 33.3 CHDDH004 D-30109 221.5 0.08 0.13 28.9 11.75 38.3 CHDDH004 D-30112 224 226 0.07 0.16 68.6 26.6 34.9 CHDDH004 D-30113 226 228 0.07 0.13 47.3 30.9 94.1 31.5 41.3 CHDDH004 D-30118 234 236 1.3 0.51 256 32.7 33.3 CHDDH004 D-30112 234 0.03 0.09 15.8 35.3 38.8 CHDH004 D-30121									
CHODH004 D-30105 217 218 0.13 0.14 151.5 7.19 29.3 CHDDH004 D-30105 217 218 0.13 0.18 85.8 10.1 32.5 CHDDH004 D-30107 219 220 0.22 0.25 166 11.25 35.3 CHDDH004 D-30108 220 221.5 0.08 0.13 28.9 11.75 38.8 CHDDH004 D-30110 222 224 0.00 0.19 148.5 23.5 36.6 CHDDH004 D-30113 226 228 0.07 0.13 47.3 30.9 39.3 CHDDH004 D-30115 230 232 0.03 0.09 26.5 32.7 3 CHDDH004 D-30116 232 234 0.03 0.09 56.1 29.4 31.1 CHDDH004 D-30120 242 242 0.05 0.33 118 36.2 34.2 CHDDH004 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
CH0DH004 D-30105 217 218 0.13 0.18 85.8 10.1 32: CHDDH004 D-30106 218 219 0.66 0.83 785 25.6 33 CHDDH004 D-30108 220 2.22 0.12 0.27 758 25.5 34.4 CHDDH004 D-30110 222 224 0.09 0.19 148.5 23.5 36.4 CHDDH004 D-30112 224 226 0.07 0.13 47.3 30.9 39.9 CHDDH004 D-30114 228 230 1.04 0.38 19.1 31.5 41.1 CHDDH004 D-30116 232 232 0.03 0.09 26.5 32.7 3 CHDDH004 D-30118 234 236 1.3 0.51 25.6 22.8 35.3 38.8 CHDDH004 D-30121 240 242 0.05 0.33 11.18 36.1 61.1 64.1 64.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
CHDDH004 D-30106 218 219 0.66 0.83 785 25.6 33 CHDDH004 D-30107 219 220 0.22 0.25 1166 11.15 33.6 CHDDH004 D-30109 221 222 0.12 0.27 25.8 25.5 34.6 CHDDH004 D-30110 222 224 0.09 0.19 148.5 223.5 36.6 CHDDH004 D-30113 226 228 0.07 0.16 68.6 26 34.7 CHDDH004 D-30115 230 232 0.03 0.09 26.5 32.7 3 CHDDH004 D-30116 232 234 0.03 0.09 15.8 35.3 38 CHDDH004 D-30120 238 240 0.05 0.33 11.8 36.2 43.3 CHDDH004 D-30122 242 244 0.05 0.35 25.8 34.1 61.1 CHDDH004 D-3012									
CHDDH004 D-30107 219 220 0.22 0.25 166 11.25 35. CHDDH004 D-30108 220 221.5 0.08 0.13 28.9 11.75 38.8 CHDDH004 D-30110 222 224 0.09 0.19 148.5 23.5 36.3 CHDDH004 D-30112 224 226 0.07 0.13 47.3 30.9 39.9 CHDDH004 D-30114 228 230 1.04 0.38 19.1 31.5 41.1 CHDDH004 D-30115 230 232 0.03 0.013 43.5 30.1 34.5 CHDDH004 D-30118 234 236 1.3 0.51 256.1 29.4 31.5 CHDDH004 D-30121 240 0.42 0.05 0.33 1118 36.2 43.8 CHDDH004 D-30122 244 246 0.08 0.57 88.2 37.4 60.0 CHDDH004									32.7
CHDDH004 D-30108 220 221.5 0.08 0.13 28.9 11.75 38.3 CHDDH004 D-30110 222 222 0.12 0.27 288 23.5 34. CHDDH004 D-30112 224 226 0.07 0.16 68.6 26 34. CHDDH004 D-30113 226 228 0.07 0.13 47.3 30.9 39.3 CHDDH004 D-30115 230 232 0.03 0.09 26.5 32.7 33 CHDDH004 D-30116 232 234 0.03 0.09 15.8 35.3 38.8 CHDDH004 D-30119 236 238 0.2 0.29 56.1 22.4 35.3 38.8 CHDDH004 D-3012 242 240 0.05 0.33 11.8 36.2 43. 43. CHDDH004 D-3012 246 247.1 0.05 0.27 38 36.6 55. 34.9	CHDDH004								38
CHODH004 D-30109 221.5 222 0.12 0.27 258 25.5 34. CHODH004 D-30110 222 224 0.09 0.19 148.5 23.5 36. CHDDH004 D-30113 226 228 0.07 0.13 47.3 30.9 39.3 CHDDH004 D-30114 228 230 1.04 0.38 19.1 31.5 41.1 CHDDH004 D-30116 232 232 0.03 0.03 143.5 30.1 34.4 CHDDH004 D-30118 234 236 1.3 0.51 256 22.8 35.3 CHDDH004 D-30120 238 240 0.03 0.09 15.8 35.3 38.8 CHDDH004 D-30121 240 242 0.05 0.33 11.8 36.2 34.1 61. CHDDH004 D-30122 242 244 20.5 0.33 11.8 35.8 39. CHDDH0	CHDDH004	D-30107	219	220	0.22	0.25	166	11.25	35.2
CHDDH004 D-30110 222 224 0.09 0.19 148.5 23.5 36.5 CHDDH004 D-30112 224 226 0.07 0.16 68.6 26 34.4 CHDDH004 D-30114 228 230 1.04 0.38 19.1 31.5 41.1 CHDDH004 D-30115 230 232 0.03 0.09 26.5 32.7 33 CHDDH004 D-30118 234 236 1.3 0.51 256 22.8 351 CHDDH004 D-30119 236 238 0.2 0.29 56.1 29.4 31.1 CHDDH004 D-30121 240 242 0.05 0.33 11.8 36.2 43. CHDDH004 D-30122 242 244 0.05 0.27 38 48 55. CHDDH004 D-3012 244 246 0.43 0.42 21.9 5.5 23.4 6.0.1 31.1 33.4	CHDDH004	D-30108	220	221.5	0.08	0.13	28.9	11.75	38.8
CHDDH004 D-30112 224 226 0.07 0.16 68.6 26 34.4 CHDDH004 D-30114 226 228 0.07 0.13 147.3 30.9 33.3 CHDDH004 D-30115 230 232 0.03 0.09 26.5 32.7 3 CHDDH004 D-30116 232 234 0.03 0.13 43.5 30.1 34.4 CHDDH004 D-30118 234 236 1.3 0.51 256 22.8 35.5 CHDDH004 D-30120 238 240 0.03 0.09 15.8 35.3 38.8 CHDDH004 D-30122 242 244 0.05 0.35 25.8 34.1 61.7 CHDDH004 D-30122 244 246 0.08 0.57 38.48 55.5 CHDDH004 D-30127 248.2 248.1 0.43 0.43 222 11.95 41.1 CHDDH004 D-30132 <	CHDDH004	D-30109	221.5	222	0.12	0.27	258	25.5	34.2
CHDDH004 D-30113 226 228 0.07 0.13 47.3 30.9 39.3 CHDDH004 D-30114 228 230 1.04 0.38 19.1 31.5 44.1 CHDDH004 D-30116 232 234 0.03 0.013 43.5 30.1 34.4 CHDDH004 D-30118 234 236 1.3 0.51 256 2.2.8 35.3 CHDDH004 D-30120 238 240 0.03 0.09 15.8 35.3 38.8 CHDDH004 D-30121 240 242 0.05 0.33 118 36.2 43.3 CHDDH004 D-30121 244 246 0.08 0.57 88.2 37.4 60.0 CHDDH004 D-30127 248.2 248.8 0.13 0.56 71.8 35.8 39.9 CHDDH004 D-30128 247.5 251 0.06 0.27 53.3 30.6 66. CHDDH004	CHDDH004	D-30110	222	224	0.09	0.19	148.5	23.5	36.9
CHDDH004 D-30113 226 228 0.07 0.13 47.3 30.9 39.3 CHDDH004 D-30114 228 230 1.04 0.38 19.1 31.5 44.1 CHDDH004 D-30116 232 234 0.03 0.013 43.5 30.1 34.4 CHDDH004 D-30118 234 236 1.3 0.51 256 2.2.8 35.3 CHDDH004 D-30120 238 240 0.03 0.09 15.8 35.3 38.8 CHDDH004 D-30121 240 242 0.05 0.33 118 36.2 43.3 CHDDH004 D-30121 244 246 0.08 0.57 88.2 37.4 60.0 CHDDH004 D-30127 248.2 248.8 0.13 0.56 71.8 35.8 39.9 CHDDH004 D-30128 247.5 251 0.06 0.27 53.3 30.6 66. CHDDH004	CHDDH004	D-30112	224	226	0.07	0.16	68.6	26	34.8
CHDDH004 D-30115 230 232 0.03 0.09 26.5 32.7 33 CHDDH004 D-30116 232 234 0.03 0.13 43.5 30.1 34.5 CHDDH004 D-30119 236 238 0.2 0.29 56.1 29.4 31.1 CHDDH004 D-30120 238 240 0.05 0.33 118 36.2 43.3 CHDDH004 D-30122 242 244 0.05 0.33 118 36.2 43.3 CHDDH004 D-30124 244 246 0.08 0.57 38 48 55.5 CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30129 250 251 0.06 0.27 53.3 30.6 36.6 CHDDH004 D-30132 251.5 253 0.18 0.16 32.8 32.5 33.1 34.9 31.1 <	CHDDH004	D-30113	226		0.07	0.13	47.3	30.9	39.8
CHDDH004 D-30115 230 232 0.03 0.09 26.5 32.7 33 CHDDH004 D-30116 232 234 0.03 0.13 43.5 30.1 34.5 CHDDH004 D-30119 236 238 0.2 0.29 56.1 29.4 31.1 CHDDH004 D-30120 238 240 0.05 0.33 118 36.2 43.3 CHDDH004 D-30122 242 244 0.05 0.33 118 36.2 43.3 CHDDH004 D-30124 244 246 0.08 0.57 38 48 55.5 CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30129 250 251 0.06 0.27 53.3 30.6 36.6 CHDDH004 D-30132 251.5 253 0.18 0.16 32.8 32.5 33.1 34.9 31.1 <	CHDDH004	D-30114	228	230	1.04	0.38	19.1	31.5	41.8
CHDDH004 D-30116 232 234 0.03 0.13 44.5 30.1 34.4 CHDDH004 D-30118 234 236 1.3 0.51 256 22.8 35.5 CHDDH004 D-30110 238 240 0.03 0.09 51.8 35.3 38.8 CHDDH004 D-30121 242 244 0.05 0.33 11.8 36.2 43.4 CHDDH004 D-30123 244 246 0.08 0.57 38.2 37.4 66.0 CHDDH004 D-30127 248.2 243.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30128 248.8 250 0.09 0.20 56.5 28.2 33.0 6 36. CHDDH004 D-30132 251.5 251 0.06 0.27 33.3 36.5 34.9	CHDDH004		230	232	0.03	0.09	26.5	32.7	37
CHDDH004 D-30118 234 236 1.3 0.51 256 22.8 35.3 CHDDH004 D-30120 238 240 0.03 0.09 15.8 35.3 38. CHDDH004 D-30121 240 242 0.05 0.33 118 36.2 43.3 CHDDH004 D-30123 244 246 0.08 0.57 88.2 37.4 60. CHDDH004 D-30123 244 246 0.08 0.57 88.2 37.4 60. CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30129 250 0.06 0.27 53.3 30.6 35.6 CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.65 253 0.16 0.13 31.8 45. CHDDH004 D-30133 253	CHDDH004	D-30116		234			43.5	30.1	34.4
CHDDH004 D-30119 236 238 0.2 0.29 56.1 29.4 31. CHDDH004 D-30120 238 240 0.03 0.09 15.8 35.3 38. CHDDH004 D-30121 240 242 0.05 0.33 118 36.2 43. CHDDH004 D-30123 244 246 0.08 0.57 88.2 37.4 60. CHDDH004 D-30124 246 247.1 0.05 7.7 87.8 39. CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30128 248.8 250 0.09 0.20 56.5 28.2 33. CHDDH004 D-30130 251 25.1 0.34 5.09 55.1 34.9 51.1 CHDDH004 D-30132 251.65 253 0.18 0.16 32.8 32.5 34. CHDDH004 D-30133									35.9
CHDDH004 D-30120 238 240 0.03 0.09 15.8 35.3 38.3 CHDDH004 D-30121 240 242 0.05 0.33 118 36.2 43.3 CHDDH004 D-30122 244 246 0.08 0.55 88.2 37.4 60.0 CHDDH004 D-30123 244 246 0.08 0.57 88.2 37.4 60.0 CHDDH004 D-30127 248.2 248.2 0.13 0.56 71.8 35.8 39.9 CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 33.1 CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45. CHDDH004 D-30133 256 258 0.05 0.12 30.9 33 42. CHDDH004									
CHDDH004 D-30121 240 242 0.05 0.33 118 36.2 43. CHDDH004 D-30122 242 244 0.05 0.55 25.8 34.1 61. CHDDH004 D-30123 244 246 0.08 0.57 88.2 37.4 60. CHDDH004 D-30125 247.1 248.2 0.13 0.56 71.8 35.8 39. CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30129 250 251 0.06 0.27 53.3 30.6 36. CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.65 253 0.018 0.16 31.1 33 42. CHDDH004 D-30132 256 258 0.05 0.12 30.9 33. 48. CHDDH004									
CHDDH004 D-30122 242 244 0.05 0.35 25.8 34.1 61.1 CHDDH004 D-30123 244 246 0.08 0.57 78.2 37.4 60.0 CHDDH004 D-30125 247.1 248.2 0.13 0.56 71.8 35.8 39.9 CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30128 248.8 250 0.09 0.20 56.5 28.2 33.6 36.6 CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.6 253 0.18 0.16 32.8 32.5 34.1 CHDDH004 D-30133 253 254 0.04 0.11 31.1 33 42.2 CHDDH004 D-30138 262 0.03 0.13 25.2 33.5 35. CHDDH004									
CHDDH004 D-30123 244 246 0.08 0.57 88.2 37.4 60. CHDDH004 D-30124 246 247.1 0.05 0.27 38 48 55. CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30128 248.8 20.09 0.20 56.5 28.2 33.3 CHDDH004 D-30129 250 251 0.06 0.27 53.3 30.6 36.6 CHDDH004 D-30130 251 251 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45.5 CHDDH004 D-30133 255 258 0.05 0.12 30.9 34.8 CHDDH004 D-30137 260 262 0.03 0.13 25.2 33.5 35.5 CHDDH004 D-30137 260									
CHDDH004 D-30124 246 247.1 0.05 0.27 38 48 55. CHDDH004 D-30127 248.2 248.8 0.13 0.56 71.8 35.8 39. CHDDH004 D-30127 248.2 248.8 0.03 0.43 0.22 11.95 41.1 CHDDH004 D-30129 250 251 0.06 0.27 53.3 30.6 36. CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.6 253 0.04 0.17 30 31.8 45. CHDDH004 D-30134 254 256 0.06 0.13 31.1 33 42. CHDDH004 D-30135 256 258 0.05 0.12 30.9 35.3 35. CHDDH004 D-30138 262 264 0.13 0.18 28 33.5 35. CHDDH004 D									
CHDDH004 D-30125 247.1 248.2 0.13 0.56 71.8 35.8 39. CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30128 248.8 250 0.09 0.20 56.5 28.2 33.3 CHDDH004 D-30130 251 251.7 0.34 50.9 55.1 34.9 31.1 CHDDH004 D-30132 251.65 253 0.18 0.16 32.8 32.5 34.4 CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45.5 CHDDH004 D-30135 256 258 0.05 0.12 30.9 33 48. CHDDH004 D-30137 260 262 0.03 0.12 26 35.5 35.5 CHDDH004 D-30138 262 264 0.13 0.18 28.3 35.5 35.5 CHDDH004									
CHDDH004 D-30127 248.2 248.8 0.43 0.43 222 11.95 41.1 CHDDH004 D-30128 248.8 250 0.09 0.20 56.5 28.2 33.3 CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.65 253 0.18 0.16 32.8 32.5 34.1 CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45.5 CHDDH004 D-30135 256 258 0.05 0.12 30.9 33 48. CHDDH004 D-30136 258 260 0.04 0.14 27.7 7.5 35. CHDDH004 D-30137 260 262 0.03 0.13 25.2 33.5 39. CHDDH004 D-30138 262 264 0.13 0.13 25.2 33.5 39. CHDDH004 <									
CHDDH004 D-30128 248.8 250 0.09 0.20 56.5 28.2 33.3 CHDDH004 D-30129 250 251 0.06 0.27 53.3 30.6 36.6 CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.65 253 0.18 0.16 32.8 32.5 34.0 CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45. CHDDH004 D-30135 256 258 0.05 0.12 30.9 33 48. CHDDH004 D-30136 258 260 0.04 0.14 27.7 35. CHDDH004 D-30137 260 262 0.03 0.12 26 35.3 35. CHDDH004 D-30139 264 266 0.03 0.13 25.2 33.5 39. CHDDH004 D-30140									
CHDDH004 D-30129 250 251 0.06 0.27 53.3 30.6 36. CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.65 253 0.18 0.16 32.8 32.5 34. CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45. CHDDH004 D-30135 256 258 0.05 0.12 30.9 33 48. CHDDH004 D-30136 258 260 0.04 0.14 27.7 7.7 35. CHDDH004 D-30137 260 262 0.03 0.12 26 35.3 39. CHDDH004 D-30138 262 264 0.13 0.18 28 33.5 39. CHDDH004 D-30140 266 267 0.12 0.27 21 28.6 34.2 37.4 CHDDH004									
CHDDH004 D-30130 251 251.7 0.34 5.09 55.1 34.9 31.1 CHDDH004 D-30132 251.65 253 0.18 0.16 32.8 32.5 34.1 CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 445. CHDDH004 D-30134 254 256 0.06 0.13 31.1 33 42. CHDDH004 D-30135 256 258 0.05 0.12 30.9 38 48. CHDDH004 D-30136 258 260 0.03 0.12 266 35.3 35.5 CHDDH004 D-30138 262 264 0.13 0.18 28 33.5 35. CHDDH004 D-30140 266 267 0.12 0.27 21 28.6 34.4 34.4 400. CHDDH004 D-30141 267 268 0.33 0.74 34.9 34.3 34.4 34.4									
CHDDH004 D-30132 251.65 253 0.18 0.16 32.8 32.5 34. CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45. CHDDH004 D-30134 254 256 0.06 0.13 31.1 33 42. CHDDH004 D-30135 256 258 0.05 0.12 30.9 33 48. CHDDH004 D-30136 258 260 0.04 0.14 27.7 27.7 35. CHDDH004 D-30137 260 262 0.03 0.13 252 33.5 35. CHDDH004 D-30139 264 266 0.03 0.13 252 33.5 39. CHDDH004 D-30140 266 267 0.12 0.27 21 28.6 34.3 CHDDH004 D-30141 267 268 0.33 0.74 34.9 34.3 34.2 CHDDH004 D-30142									
CHDDH004 D-30133 253 254 0.04 0.17 30 31.8 45. CHDDH004 D-30134 254 256 0.06 0.13 31.1 33 42. CHDDH004 D-30135 256 258 0.05 0.12 30.9 33 48. CHDDH004 D-30136 258 260 0.04 0.14 27.7 27.7 35. CHDDH004 D-30137 260 262 0.03 0.12 266 35.3 35. CHDDH004 D-30138 262 264 0.13 0.18 28 33.5 39. CHDDH004 D-30140 266 267 0.12 0.27 21 28.6 34.3 CHDDH004 D-30141 267 268 0.33 0.77 26.8 34.2 37.4 CHDDH004 D-30143 269 270 0.06 0.17 26.8 34.2 34.3 CHDDH004 D-30143									31.8
CHDDH004 D-30134 254 256 0.06 0.13 31.1 33 42. CHDDH004 D-30135 256 258 0.05 0.12 3.09 33 48. CHDDH004 D-30136 258 260 0.04 0.14 27.7 27.7 35. CHDDH004 D-30137 260 262 0.03 0.12 266 35.3 35. CHDDH004 D-30138 262 264 0.13 0.18 28 33.5 39. CHDDH004 D-30139 264 266 0.03 0.13 25.2 33.5 39. CHDDH004 D-30140 266 267 0.12 0.27 21 28.6 34.1 CHDDH004 D-30142 268 269 0.11 0.18 34.1 34.4 40.1 CHDDH004 D-30143 269 270 0.06 0.17 26.8 34.2 37.4 CHDDH004 D-30143									34.2
CHDDH004 D-30135 256 258 0.05 0.12 30.9 33 48. CHDDH004 D-30136 258 260 0.04 0.14 27.7 77.7 35. CHDDH004 D-30137 260 262 0.03 0.12 266 35.3 35. CHDDH004 D-30138 262 264 0.13 0.18 28 33.5 39. CHDDH004 D-30139 264 266 0.03 0.13 25.2 33.5 39. CHDDH004 D-30140 266 267 0.12 0.27 21 28.6 34.9 CHDDH004 D-30141 267 268 0.33 0.74 34.9 34.3 34.7 CHDDH004 D-30142 268 269 0.11 0.18 34.1 34.4 40.7 CHDDH004 D-30143 269 270 0.06 0.17 26.8 34.2 37.4 CHDDH004 D-30143 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>45.4</td>									45.4
CHDDH004 D-30136 258 260 0.04 0.14 27.7 27.7 35. CHDDH004 D-30137 260 262 0.03 0.12 26 35.3 35. CHDDH004 D-30138 262 264 0.13 0.18 28 33.5 33 CHDDH004 D-30139 264 266 0.03 0.13 25.2 33.5 39. CHDDH004 D-30140 266 267 0.12 0.27 21 28.6 34.9 CHDDH004 D-30141 267 268 0.33 0.74 34.9 34.3 34.7 CHDDH004 D-30142 268 269 0.11 0.18 34.1 34.4 40.7 CHDDH004 D-30143 269 270 0.06 0.17 26.8 34.2 37.4 CHDDH004 D-30143 279 271 0.04 0.11 32.3 33.9 38.3 CHDDH004 D-30147 <td>CHDDH004</td> <td>D-30134</td> <td></td> <td>256</td> <td></td> <td>0.13</td> <td></td> <td></td> <td>42.3</td>	CHDDH004	D-30134		256		0.13			42.3
CHDDH004D-301372602620.030.122635.335.3CHDDH004D-301382622640.130.182833.533CHDDH004D-301392642660.030.1325.233.539.CHDDH004D-301402662670.120.272128.634.3CHDDH004D-301412672680.330.7434.934.334.3CHDDH004D-301422682690.110.1834.134.440.3CHDDH004D-301432692700.060.1726.834.237.4CHDDH004D-301442702710.040.1132.333.938.3CHDDH004D-3014527127.90.110.1730.833.839.9CHDDH004D-30146271.927.40.190.2825.429.234.3CHDDH004D-3014727.42730.040.1114.253740.3CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301502752760.160.2429.434.334.3CHDDH004D-301512762770.230.3097.727.329.3CHDDH004D-301512762770.230.3097.727.335.3CHDDH004D-301542782800.07	CHDDH004	D-30135	256			0.12			48.3
CHDDH004D-301382622640.130.182833.53CHDDH044D-301392642660.030.1325.233.539.CHDDH044D-301402662670.120.272128.634.3CHDDH044D-301412672680.330.7434.934.334.3CHDDH044D-301422682690.110.1834.134.440.3CHDDH044D-301432692700.060.1726.834.237.4CHDDH044D-301442702710.040.1132.333.938.3CHDDH044D-30145271271.90.010.1730.833.839.9CHDDH044D-30146271.9272.40.190.2825.429.234.4CHDDH044D-30146271.9272.40.190.2825.429.234.4CHDDH044D-30147272.42730.040.1114.253740.3CHDDH044D-301482732740.020.1225.434.438.4CHDDH044D-301502752760.160.2429.438.739.9CHDDH044D-301512762770.230.3097.727.329.5CHDDH044D-301522772780.130.1930.437.235.7CHDDH044D-301542782800.07<	CHDDH004	D-30136	258	260	0.04	0.14	27.7	27.7	35.3
CHDDH004D-301392642660.030.1325.233.539.CHDDH004D-301402662670.120.272128.634.3CHDDH004D-301412672680.330.7434.934.334.4CHDDH004D-301422682690.110.1834.134.440.1CHDDH004D-301432692700.060.1726.834.237.4CHDDH004D-301432692700.040.1132.333.938.3CHDDH004D-301442702710.040.1132.333.938.3CHDDH004D-30145271271.90.110.1730.833.839.9CHDDH004D-30146271.9272.40.190.2825.429.234.4CHDDH004D-30147272.42730.040.1114.253740.1CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301502752760.160.2429.434.739.0CHDDH004D-301512762770.230.3097.727.339.0CHDDH004D-301522772780.130.1930.437.235.7CHDDH004D-301512762770.230.3097.727.335.7CHDDH004D-301522772780.13	CHDDH004	D-30137	260	262	0.03	0.12	26	35.3	35.9
CHDDH004D-301402662670.120.272128.634.3CHDDH004D-301412672680.330.7434.934.334.7CHDDH004D-301422682690.110.1834.134.440.7CHDDH004D-301432692700.060.1726.834.237.4CHDDH004D-301442702710.040.1132.333.938.7CHDDH004D-30145271271.90.110.1730.833.839.9CHDDH004D-30146271.9272.40.190.2825.429.234.4CHDDH004D-30147272.42730.040.1114.253740.1CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-30147272.42750.050.1422.738.539.0CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301502752760.160.2429.438.741.7CHDDH004D-301512762770.230.3097.727.339.9CHDDH004D-301522772780.130.1930.437.235.7CHDDH004D-301542782800.070.1450.238.435.7CHDDH004D-301552802820	CHDDH004	D-30138	262	264	0.13	0.18	28	33.5	37
CHDDH004D-301412672680.330.7434.934.334.3CHDDH004D-301422682690.110.1834.134.440.3CHDDH004D-301432692700.060.1726.834.237.4CHDDH004D-301442702710.040.1132.333.938.3CHDDH004D-30145271271.90.110.1730.833.839.9CHDDH004D-30146271.9272.40.190.2825.429.234.3CHDDH004D-30147272.42730.040.1114.253740.3CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301492742750.050.1422.738.539.0CHDDH004D-301502752760.160.2429.438.741.3CHDDH004D-301512762770.230.3097.727.329.3CHDDH004D-301522772780.130.1930.437.235.3CHDDH004D-301542782800.070.1450.238.435.3CHDDH004D-301552802820.070.1686.337.137.3CHDDH004D-301562822840.10.26139.531.531.7CHDDH004D-301562822860	CHDDH004	D-30139	264	266	0.03	0.13	25.2	33.5	39.2
CHDDH004D-301422682690.110.1834.134.440.1CHDDH004D-301432692700.060.1726.834.237.4CHDDH004D-301442702710.040.1132.333.938.3CHDDH004D-30145271271.90.110.1730.833.839.9CHDDH004D-30146271.9272.40.190.2825.429.234.3CHDDH004D-30147272.42730.040.1114.253740.3CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301492742750.050.1422.738.539.9CHDDH004D-301502752760.160.2429.438.741.3CHDDH004D-301512762770.230.3097.727.329.3CHDDH004D-301522772780.130.1930.437.235.3CHDDH004D-301542782800.070.1450.238.435.3CHDDH004D-301552802820.070.1686.337.137.3CHDDH004D-301562822840.10.26139.531.531.7CHDDH004D-301572842860.060.2353.736.229.3	CHDDH004	D-30140	266	267	0.12	0.27	21	28.6	34.9
CHDDH004D-301432692700.060.1726.834.237.4CHDDH004D-301442702710.040.1132.333.938.3CHDDH004D-30145271271.90.110.1730.833.839.9CHDDH004D-30146271.9272.40.190.2825.429.234.3CHDDH004D-30147272.42730.040.1114.253740.3CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301492742750.050.1422.738.539.0CHDDH004D-301502752760.160.2429.438.741.1CHDDH004D-301512762770.230.3097.727.329.3CHDDH004D-301522772780.130.1930.437.235.4CHDDH004D-301542782800.070.1450.238.435.3CHDDH004D-301552802820.070.1686.337.137.3CHDDH004D-301562822840.10.26139.531.531.7CHDDH004D-301572842860.060.2353.736.229.3	CHDDH004	D-30141	267	268	0.33	0.74	34.9	34.3	34.7
CHDDH004D-301442702710.040.1132.333.938.3CHDDH004D-30145271.9271.90.110.1730.833.839.9CHDDH004D-30146271.9272.40.190.2825.429.234.4CHDDH004D-30147272.42730.040.1114.253740.5CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301492742750.050.1422.738.539.0CHDDH004D-301502752760.160.2429.438.741.1CHDDH004D-301512762770.230.3097.727.329.3CHDDH004D-301522772780.130.1930.437.235.4CHDDH004D-301542782800.070.1450.238.435.3CHDDH004D-301552802820.070.1686.337.137.3CHDDH004D-301562822840.10.26139.531.531.7CHDDH004D-301572842860.060.2353.736.229.3	CHDDH004	D-30142	268	269	0.11	0.18	34.1	34.4	40.1
CHDDH004D-30145271271.90.110.1730.833.833.9CHDDH004D-30146271.9272.40.190.2825.429.234.4CHDDH004D-30147272.42730.040.1114.253740.5CHDDH004D-30147272.42730.020.1225.434.438.4CHDDH004D-301482732740.020.1225.434.438.4CHDDH004D-301502752760.050.1422.738.539.0CHDDH004D-301512762770.230.3097.727.329.3CHDDH004D-301522772780.130.1930.437.235.4CHDDH004D-301542782800.070.1450.238.435.3CHDDH004D-301552802820.070.1686.337.137.3CHDDH004D-301562822840.10.26139.531.531.7CHDDH004D-301572842860.060.2353.736.229.3	CHDDH004	D-30143	269	270	0.06	0.17	26.8	34.2	37.4
CHDDH004 D-30146 271.9 272.4 0.19 0.28 25.4 29.2 34.4 CHDDH004 D-30147 272.4 273 0.04 0.11 14.25 37 40.5 CHDDH004 D-30148 273 274 0.02 0.12 25.4 34.4 38.4 CHDDH004 D-30148 273 274 0.02 0.12 25.4 34.4 38.4 CHDDH004 D-30149 274 275 0.05 0.14 22.7 38.5 39.0 CHDDH004 D-30150 275 276 0.16 0.24 29.4 38.7 41.7 CHDDH004 D-30151 276 277 0.23 0.30 97.7 27.3 29.3 CHDDH004 D-30152 277 278 0.13 0.19 30.4 37.2 35.4 CHDDH004 D-30154 278 280 0.07 0.14 50.2 38.4 35.7 CHDDH004	CHDDH004	D-30144	270	271	0.04	0.11	32.3	33.9	38.2
CHDDH004 D-30147 272.4 273 0.04 0.11 14.25 37 40.5 CHDDH004 D-30148 273 274 0.02 0.12 25.4 34.4 38.4 CHDDH004 D-30149 274 275 0.05 0.14 22.7 38.5 39.0 CHDDH004 D-30150 275 276 0.16 0.24 29.4 38.7 41.1 CHDDH004 D-30151 276 277 0.23 0.30 97.7 27.3 29.3 CHDDH004 D-30152 277 278 0.13 0.19 30.4 37.2 35.3 CHDDH004 D-30154 278 20.07 0.14 50.2 38.4 35.3 CHDDH004 D-30154 278 280 0.07 0.14 50.2 38.4 35.3 CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.3 CHDDH004 D-30156	CHDDH004	D-30145	271	271.9	0.11	0.17	30.8	33.8	39.9
CHDDH004 D-30147 272.4 273 0.04 0.11 14.25 37 40.5 CHDDH004 D-30148 273 274 0.02 0.12 25.4 34.4 38.4 CHDDH004 D-30149 274 275 0.05 0.14 22.7 38.5 39.0 CHDDH004 D-30150 275 276 0.16 0.24 29.4 38.7 41.1 CHDDH004 D-30151 276 277 0.23 0.30 97.7 27.3 29.3 CHDDH004 D-30152 277 278 0.13 0.19 30.4 37.2 35.3 CHDDH004 D-30154 278 20.07 0.14 50.2 38.4 35.3 CHDDH004 D-30154 278 280 0.07 0.14 50.2 38.4 35.3 CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.3 CHDDH004 D-30156									34.5
CHDDH004 D-30148 273 274 0.02 0.12 25.4 34.4 38.4 CHDDH004 D-30149 274 275 0.05 0.14 22.7 38.5 39.0 CHDDH004 D-30150 275 276 0.16 0.24 29.4 38.7 41.1 CHDDH004 D-30151 276 277 0.23 0.30 97.7 27.3 29.3 CHDDH004 D-30152 277 278 0.13 0.19 30.4 37.2 35.3 CHDDH004 D-30154 278 20.07 0.14 50.2 38.4 35.3 CHDDH004 D-30155 280 282 0.07 0.14 50.2 38.4 35.3 CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.3 CHDDH004 D-30156 282 284 0.1 0.26 139.5 31.5 31.7 CHDDH004 D-30157									40.5
CHDDH004 D-30149 274 275 0.05 0.14 22.7 38.5 39.0 CHDDH004 D-30150 275 276 0.16 0.24 29.4 38.7 41.1 CHDDH004 D-30151 276 277 0.23 0.30 97.7 27.3 29.1 CHDDH004 D-30152 277 278 0.13 0.19 30.4 37.2 35.3 CHDDH004 D-30154 278 280 0.07 0.14 50.2 38.4 35.3 CHDDH004 D-30155 280 282 0.07 0.14 50.2 38.4 35.3 CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.3 CHDDH004 D-30156 282 284 0.1 0.26 139.5 31.5 31.3 CHDDH004 D-30157 284 286 0.06 0.23 53.7 36.2 29.3									38.4
CHDDH004 D-30150 275 276 0.16 0.24 29.4 38.7 41 CHDDH004 D-30151 276 277 0.23 0.30 97.7 27.3 29.1 CHDDH004 D-30152 277 278 0.13 0.19 30.4 37.2 35.1 CHDDH004 D-30154 278 280 0.07 0.14 50.2 38.4 35.1 CHDDH004 D-30155 280 282 0.07 0.14 50.2 38.4 35.1 CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.1 CHDDH004 D-30156 282 284 0.1 0.26 139.5 31.5 31.1 CHDDH004 D-30157 284 286 0.06 0.23 53.7 36.2 29.1									39.6
CHDDH004D-301512762770.230.3097.727.329.3CHDDH004D-301522772780.130.1930.437.235.4CHDDH004D-301542782800.070.1450.238.435.3CHDDH004D-301552802820.070.1686.337.137.3CHDDH004D-301562822840.10.26139.531.531.3CHDDH004D-301572842860.060.2353.736.229.3									41.2
CHDDH004 D-30152 277 278 0.13 0.19 30.4 37.2 35.3 CHDDH004 D-30154 278 280 0.07 0.14 50.2 38.4 35.3 CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.3 CHDDH004 D-30156 282 284 0.1 0.26 139.5 31.5 31.7 CHDDH004 D-30157 284 286 0.06 0.23 53.7 36.2 29.7									
CHDDH004 D-30154 278 280 0.07 0.14 50.2 38.4 35.1 CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.1 CHDDH004 D-30156 282 284 0.1 0.26 139.5 31.5 31.1 CHDDH004 D-30157 284 286 0.06 0.23 53.7 36.2 29.1									
CHDDH004 D-30155 280 282 0.07 0.16 86.3 37.1 37.1 CHDDH004 D-30156 282 284 0.1 0.26 139.5 31.5 31.1 CHDDH004 D-30157 284 286 0.06 0.23 53.7 36.2 29.1									
CHDDH004 D-30156 282 284 0.1 0.26 139.5 31.5 31.7 CHDDH004 D-30157 284 286 0.06 0.23 53.7 36.2 29.7									
CHDDH004 D-30157 284 286 0.06 0.23 53.7 36.2 29.1									
		D-30157	284	280		0.23	53./ 92.5	36.2	29.1

82.5

37

35

HOLE ID	SAMPLE	FROM	TO Au g	g/t Ag g/	't (Cu ppm	Pb ppm	Zn ppm
CHDDH004	D-30159	288	290	0.08	0.15	64.8	35.8	35.8
CHDDH004	D-30160	290	292	0.08	0.98	102.5	87.7	64
CHDDH004	D-30161	292	294	0.1	0.09	44.7	36.9	36.5
CHDDH004	D-30162	294	296	0.11	0.15	94.9	35.4	33.5
CHDDH004	D-30163	296	298	0.04	0.07	24.5	39	38.4
CHDDH004	D-30164	298	300	0.06	0.11	56	38.9	37.3
CHDDH004	D-30165	300	302	0.08	0.16	100	34.4	32.6
CHDDH004	D-30166	302	304	0.17	0.20	120	22.3	23.3
CHDDH004	D-30167	304	306	0.15	0.19	109	25.2	22.6
CHDDH004	D-30168	306	308	0.06	0.10	61.3	38.1	39.1
CHDDH004	D-30169	308	310	0.03	0.08	31	45.4	41.7
CHDDH004	D-30170	310	312	0.04	0.10	32.6	42.4	42.4
CHDDH004	D-30171	312	314	0.04	0.08	31.8	40.6	41
CHDDH004	D-30172	314	316	0.05	0.10	22.9	39.6	43.3
CHDDH004	D-30173	316	318	0.03	0.09	27.9	39.6	42.8
CHDDH004	D-30174	318	320	0.11	0.21	93.3	39.5	38.5
CHDDH004	D-30175	320	321	0.39	0.29	197.5	39.3	39
CHDDH004	D-30176	321	322	0.52	1.67	240	373	660
CHDDH004	D-30177	322	323	0.09	0.15	80.7	40.6	41.2
CHDDH004	D-30178	323	324	0.24	0.44	327	27	75.1
CHDDH004	D-30179	323	326	0.14	0.26	202	25.9	78
CHDDH004	D-30180	324	328	0.04	0.13	36.6	31.5	56.3
CHDDH004	D-30181	328	330	0.18	0.13	141.5	44.5	67.5
CHDDH004	D-30181	328	332	0.18	0.07	29.9	37	32.6
CHDDH004	D-30182	330	334	0.04	0.17	60.5	39	27.9
CHDDH004 CHDDH004	D-30185	334	336	0.07	0.10	51.6	40.4	39.1
CHDDH004 CHDDH004	D-30184	334	338	0.03	0.03	129	37.5	39.1
CHDDH004 CHDDH004	D-30185	338	339.4	0.06	0.17	80.3	37.3	47.8
CHDDH004	D-30180	339.4	339.8	0.53	4.87	462	364	289
CHDDH004 CHDDH004		339.4	339.8	0.55	0.20	73.5	41.5	42.9
	D-30188 D-30189	341	341.7	0.13	0.20	82.5	41.5	42.9
CHDDH004								
CHDDH004	D-30190	341.7	342.2	0.23	5.48	47	388	436
CHDDH004	D-30191	342.2	343	0.14	1.01	48	64.4	68.4
CHDDH004	D-30192	343	344	0.21	0.21	111	28.5	68.1
CHDDH004	D-30193	344	346	0.09	0.30	154	29.9	56.8
CHDDH004	D-30195	346	348	0.05	0.26	33.5	37	36.9
CHDDH004	D-30196	348	350	0.05	0.15	45.2	38.3	38.5
CHDDH004	D-30197	350	352	0.03	0.12	33.5	35.4	37.8
CHDDH004	D-30198	352	354	0.02	0.11	12.7	36.7	41.3
CHDDH004	D-30199	354	356	0.11	0.21	14.65	35.8	41.8
CHDDH004	D-30200	356	358	0.09	0.18	27.9		38.4
CHDDH004	D-30201	358	360	0.17	0.32	40.7		46.5
CHDDH004	D-30202	360	362	0.13	0.22	35.2	35.6	45.4
CHDDH004	D-30204	362	363.4	0.04	0.12	12.25	38.5	45.9
CHDDH004	D-30205	363.4	364.4	0.16	0.17	35	33	40.1
CHDDH004	D-30206	364.4	365.4	1.26	12.95	190.5	613	1480
CHDDH004	D-30207	365.4	367	0.15	0.49	56.1	162	374
CHDDH004	D-30208	367	367.9	0.12	0.37	28.8	23.5	41.1
CHDDH004	D-30209	367.9	369	0.08	0.36	31	39.1	62.1
CHDDH004	D-30210	369	369.9	0.12	0.32	23.2	22.2	37

JORC STATEMENTS - COMPETENT PERSONS STATEMENTS

The technical information related to Metminco's assets contained in this report that relates to Exploration Results (excluding those pertaining to Mineral Resources and Reserves) is based on information compiled by Mr Cesar Garcia, who is a Member of the Australasian Institute of Mining and Metallurgy and who is a Geologist employed by Metminco on a full-time basis. Mr Garcia has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Garcia consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

The Company is not aware of any new information or data that materially affects the information included in this release.

 FORWARD LOOKING STATEMENTS This document contains forward looking statements concerning Metminco. Forwardlooking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on Metminco's beliefs, opinions and estimates of Metminco as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forwardlooking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this presentation will actually occur.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

 ${}_{
m O}$ (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling is carried out to produce HQ3 core. Following verification of the integrity of sealed core boxes and the core within them at the Metminco core shed in Quinchia, the core is 'quick logged' by a Project Geologist and marked for sampling. Following the marking of the cutting line and allocation of sample numbers, allowing for insertion of QA/QC samples, the core is cut by employees in the company's facility within the core-shed. Nominally core is cut in half and sampled on 2m intervals, however the interval may be reduced by the Project Geologist based on the visual 'quick log'. Samples are bagged in numbered calico sacks and these placed in heavy duty plastic bags with the sample tag. Groups of 5 samples are bagged in a hessian sack, labelled and sealed, for transport. Sample preparation is carried out by ALS Laboratory in Medellin where the whole sample is crushed to -2mm and then 1kg split for pulverising to - 75micron. Splits are then generated for fire assay (Au-AA26) and analyses for an additional 48 elements using multi-acid (four acid) digest with ICP finish (ME-MS61) at ALS's laboratory in Lima, Peru.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• The maiden drilling program at Chuscal is a diamond drilling program collecting HQ3 diameter core along the length of the hole. In the case of operational necessity, this will be reduced to NQ core. Triple tubes are used to collect the core and, where ground conditions permit, core orientation is conducted on a regular basis.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to 	 The drillers are required to meet a minimum recover rate of +90%. On site, the drill crew are responsible for labelling (wood spacer block) the beginning and end depth of each drill run plus actual and expected recovery in meters. This and other field processes are audited on a daily basis. On receipt of the core boxes in the core shed facility at the Quinchia camp, the core is visually verified for inconsistencies in labelling, degree of fracturing

	Criteria	JORC Code explanation	Commentary
D		preferential loss/gain of fine/coarse material.	 (core breakage versus natural), lithology progression, core orientation marks etc. If the core meets the required conditions a term of acceptance is signed. The Core is then cleaned, core pieces are orientated and joined, lengths and labelling are verified, and geotechnical observations made. The core box is then photographed. Orientated sections of core are aligned, and a geologic log prepared. Following logging, sample intervals are determined and marked up and the cutting line transferred to the core. Core quality is, in general high and far exceeding minimum recovery conditions.
	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging is carried out visually by the Project Geologists focusing on lithology, structure, alteration and mineralization characteristics. Initially a 'quick log' is carried out to guide sampling and this is then followed by detailed logging. The level of logging is appropriate for exploration and initial resource estimation evaluation. All core is photographed following the initial verification on receipt of the core boxes and then again after the 'quick log', cutting and 2m intervals respectively but in areas of interest more dense logging and sampling may be undertaken. On receipt of the multi-element geochemical data this is interpreted for consistency with the geologic logging.
	Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 After logging and definition of sample intervals by the geologist, the marked core is cut in half using a diamond saw in a specially designed facility on site. All core is cut and sampled. The standard sample interval is 2m but may be varied by the geologist to reflect lithology, alteration or mineralization variations. As appropriate, all half or quarter core generated for a specific sample interval is collected and bagged. The other half of the core remains in the core box as a physical archive. The large size (4-8kg) of individual samples and continuous sampling of the drill hole, provides representative samples for exploration activities. Through the use of QA/QC sample procedure in this phase of drilling, any special sample preparation requirements eg due to unexpectedly coarse gold, will be identified and addressed prior to the resource drilling phase.
	Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 All samples are prepared at the ALS Medellin facility using industry accepted preparation procedures. Pulps for assay and analysis are sent to their facility in Lima Peru.

	Criteria	JORC Code explanation	Commentary
	laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Gold assays are obtained using a lead collection fire assay technique (Au-AA26) and analyses for an additional 48 elements using multi-acid (four acid) digest with ICP finish (ME-MS61) at ALS's laboratory in Lima, Peru. Fire assay for gold is considered a "total" assay technique. An acid (4 acid) digest is considered a total digestion technique. However, for some resistant minerals, not considered of economic value at this time, the digestion may be partial e.g. Zr, Ti etc. No field non-assay analysis instruments were used in the analyses reported. Metminco uses certified reference material, blank samples and field duplicates inserted into the sample sequence to verify both preparation and analytical quality. Results from the Metminco QA/QC samples are reviewed by Metminco for indications of any significant analytical bias or preparation errors in analyses reported by the Laboratory. The Laboratory also carries out internal laboratory QA/QC checks which are also reported and reviewed as part of the Metminco QA/QC analysis. The geochemical data is only accepted where the analyses are performed within acceptable industry standard limits.
	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All digital data received is verified and validated by the Company's Competent Person before loading into the assay database. Over limit gold or base metal samples are re-analysed using appropriate, alternative analytical techniques. (Au-Grav22 50g and OG46). Reported results are compiled by the Company's geologists and verified by the Company's database administrator and exploration manager. No adjustments to assay data were made.
1	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drill hole is located using a handheld GPS and Lider DTM. This has an approximate accuracy of 3-5m which is considered sufficient at this stage of exploration. On completion of the drilling program, the collars of all holes will be surveyed using high precision survey equipment. Downhole deviations of the drill hole are evaluated on a regular basis and recorded in a drill hole survey file to allow plotting in 3D. The grid system is WGS84 UTM Z18N.
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	• The interpretation of surface mapping and sampling relies on correlating isolated points of information that are influenced by factors such as weathering, accessibility and sample representativity. This impacts on the reliability of interpretations which are strongly influenced by the experience of the geologic

	Criteria	JORC Code explanation	Commentary
D		 estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 team. Structures, lithologic and alteration boundaries based on surficial information are interpretations based on the available data and will be refined as more data becomes available during the exploration program. It is only with drilling, that provides information in the third dimension, that the geologic model can be refined.
	Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 This is the first drilling program at Chuscal. To date the extent and reliability of geologic information is dependent largely on surface observations, which tend to be localised and affected by weathering. To date, two sets of veining have been identified being around 135° with steep dip to the SW and 090° with steep to moderate dip to the S. All drillholes are planned to best test the lithologies and structures as known, taking into account that steep topography limits alternatives for locating holes. CHDDH001 and CHDDH003 are perpendicular to the first vein set and oblique to the second. CHDDH002 and CHDDH004 are oblique to the first and perpendicular to the second.
	Sample security	• The measures taken to ensure sample security.	 All core boxes are nailed closed and sealed at the drill platform. On receipt at the Quinchia core shed the core boxes are examined for integrity. If there are no signs of damage or violation of the boxes, they are opened and the core is evaluated for consistency and integrity. Only then is receipt of the core formally signed off. The core shed and all core boxes, samples and pulps are secured in a closed Company facility at Quinchia secured by armed guard on a 24/7 basis. Each batch of samples are transferred in a locked vehicle and driven 165km to ALS laboratories for sample preparation in Medellin. The transfer is accompanied by a company employee.
-	Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 n/a at this stage as no audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, 	 The Farm-in and JV agreement with AngloGold Ashanti Colombia SA (AGAC) includes three granted Exploration Titles with AGAC as current beneficial owner.

personal use only

Criteria	JORC Code explanation	Commentary
land tenure status	 native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Exploration Titles were validly issued as Concession Agreements pursuant to the Mining Code. The Concession Agreement grants its holders the exclusive right to explore for and exploit all mineral substances on the parcel of land covered by such concession agreement. There are no outstanding encumbrances or charges registered against the Exploration Title at the National Registry.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The first prospecting work that refers to the Chuscal prospect was recorded in 1986 by the author Michael GA Hill who reported an average of 4ppm to 5ppm gold in the sector "Loma El Guerrero", which today is known as Chuscal Alto. There was no detailed geological description or geological map produced. The effects of hydrothermal brecciation in dioritic intrusive rocks was noted. In 1995, a Canadian TVX listed company, Minera de Colombia S.A., conducted a study in the Quinchia district, focusing on the prospects known at the time (Miraflores, La Cumbre, Chuscal and a locality that today is Tesorito). For the Chuscal area, three locations with gold mineralization being worked by artisanal miners were described, which comprise quartz+limonite veins within pyritic argillic alteration zones. AGAC commissioned a brief reconnaissance survey in 2004 from which their geologist reported the types of alteration and mineralization were similar to AGAC's model of "Gold-Rich Porphyry Deposits". AGAC conducted another prospect assessment in March 2005 from which it was reported that artisanal miners were working auriferous quartz-pyrite stockwork veins, some within porphyritic andesites, that had intruded into the Ira Monzonite. The mineralized veins had a strong structural control trending NW-SE. AGAC commissioned various reconnaissance exploration campaigns from 2005 to 2006 principally focusing on the assessment of the geology exposed in the shallow underground openings being developed by artisanal miners. In 2012, Seafield undertook a grid-based C-horizon soil geochemical survey and conducted underground rock-chip channel sampling over the Chuscal area and within the Guayacanes artisanal workings respectively. In 2013, AGAC commissioned a systematic saprolite and rock-chip sampling and mapping program from which it was concluded that the mineralization at Chuscal had both porphyry (Au-Cu-Mo) and epithermal (As-Sb) affinities, with phyllic alteration overprint

	Criteria	JORC Code explanation	Commentary
D			 detailing the area previously mapped and sampled. In 2019, on completion of the JV Agreement with AGAC, Metminco compiled all available historical data with the AGAC database and carried out a detailed reinterpretation of the integrated geochemistry and geophysical data generating an exploration model used to propose the current drilling program.
_	Geology	Deposit type, geological setting and style of mineralisation.	 The Chuscal gold zone is associated with intrusive stocks and breccias of dioritic composition and probably of Miocene age, that have intruded into the large, Cretaceous-age Irra Monzonite. At Chuscal the formation and emplacement of the stocks and breccias are associated with significant gold rich hydrothermal events, that together produced a NW orientated, 900m by 500m zone. (+100ppb Au in soils) A late stage epithermal event conditioned by E-W dilatational structures, part of a horsetail structure has locally overprinted the above. The target is within a zone within which anomalous rock samples have been collected by AGAC (refer Figure 2 in MNC ASX release dated 6 December 2018). The rock chip sampling defined a Central Zone of 600m by 240m (183 samples) where the average grade of samples is 2.66g/t Au (uncut) or 1.94g/t Au (cut²). This is incorporated within a broader area (Main Zone) of 900m by 530m (289 samples) where the average grade of samples is 1.79g/t Au (uncut) or 1.33g/t Au (cut²). Note ²: The cut samples were capped at 20g/t Au which affected 6 samples including one assaying 54 g/t Au. In neither case was a lower cut applied. For the Central & Main zones respectively, the average includes 53 and 115 samples at <0.2g/t. The underground artisanal workings occur within the Central Zone, at a depth of approximately 70m below the ridge, indicating the continuation of mineralisation at shallow depths. The multi-element rock-chip underground channel sample results indicate two dominant styles of mineralization. A probable early-stage stockwork-disseminated porphyry-style mineralization and a late stage high grade vein style (possible epithermal overprint). The porphyry-style returned average grades of 1.5g/t Au and the epithermal-style veins average 8g/t Au (cut³). Note ³: The cut underground rock-chip channel samples were capped at 20g/t Au. Note ³: The cut underground rock-chip channel samples were capped at 20g/t Au. <!--</td-->

	Criteria	JORC Code explanation	Commentary							
	Drill hole Information		This declaration covers the start of the maiden drill program at Chuscal.							
			Hole	Easting	Northing	RL (m)	Azimuth	Dip	EOH	
			CHDDH001	423456	582685	1310	060º	-60º	452m	
			CHDDH002	423564	582609	1260	345 ^⁰	-60º	412m	
			CHDDH003	423425	583071	1226	216º	-50º	302m	
			CHDDH004	423501	582760	1355	340 <u>°</u>	-60º	370m	
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	have been reported to	 The summary metrics for the underground rock-chip channel sample results have been averaged and reported as cut values. These have been previously reported to ASX. No metal equivalent values have been stated. 						
	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	stage in theMineralisation	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact number, orientation and extent of mineralised structures are not yet determined. 						
	Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Geological map showing the location of CHDDH001 to 004 and key exploration results over the Chuscal Prospect are shown within the main body of this announcement. 							

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 n/a - all results have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• Figure 1 of the press release of 30 October 2019, presents an image of the analytical signal from the ground magnetic survey recently completed. The image reflects the susceptibility variations mentioned in this press release at the RL level of 1,150m (approximately 170m beneath the drill hole collar). No other exploration data that is considered meaningful and material has been omitted from this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The preliminary drill program consisted of 1,536m in 4 drill holes to evaluate the geology, alteration and mineralization styles along the Chuscal trend. As a maiden drill program, the project information obtained during the drilling will be used to refine the Exploration Model providing a more resilient base for decision making. The objective of the program is to provide a guide to the mineralization potential of the system, both in terms of potential grade and volume, to guide resource targeted drilling in a second phase drilling program.